Suppr超能文献

基于 L1 范数的二维主成分分析同时进行鲁棒和稀疏建模。

2DPCA with L1-norm for simultaneously robust and sparse modelling.

机构信息

Key Laboratory of Child Development and Learning Science of Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing, Jiangsu 210096, PR China.

出版信息

Neural Netw. 2013 Oct;46:190-8. doi: 10.1016/j.neunet.2013.06.002. Epub 2013 Jun 10.

Abstract

Robust dimensionality reduction is an important issue in processing multivariate data. Two-dimensional principal component analysis based on L1-norm (2DPCA-L1) is a recently developed technique for robust dimensionality reduction in the image domain. The basis vectors of 2DPCA-L1, however, are still dense. It is beneficial to perform a sparse modelling for the image analysis. In this paper, we propose a new dimensionality reduction method, referred to as 2DPCA-L1 with sparsity (2DPCAL1-S), which effectively combines the robustness of 2DPCA-L1 and the sparsity-inducing lasso regularization. It is a sparse variant of 2DPCA-L1 for unsupervised learning. We elaborately design an iterative algorithm to compute the basis vectors of 2DPCAL1-S. The experiments on image data sets confirm the effectiveness of the proposed approach.

摘要

鲁棒降维是处理多元数据的一个重要问题。基于 L1 范数的二维主成分分析(2DPCA-L1)是最近在图像域中提出的一种用于鲁棒降维的技术。然而,2DPCA-L1 的基向量仍然是密集的。对图像分析进行稀疏建模是有益的。在本文中,我们提出了一种新的降维方法,称为具有稀疏性的 2DPCA-L1(2DPCAL1-S),它有效地结合了 2DPCA-L1 的鲁棒性和稀疏诱导 lasso 正则化。它是用于无监督学习的 2DPCA-L1 的稀疏变体。我们精心设计了一种迭代算法来计算 2DPCAL1-S 的基向量。在图像数据集上的实验验证了所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验