Suppr超能文献

灰狼优化增强卷积神经网络与双向门控循环单元模型在信用评分预测中的应用

Application of a grey wolf optimization-enhanced convolutional neural network and bidirectional gated recurrent unit model for credit scoring prediction.

作者信息

Fang Yetong

机构信息

School of Mathematics, Renmin University of China, Beijing, China.

出版信息

PLoS One. 2025 May 27;20(5):e0322225. doi: 10.1371/journal.pone.0322225. eCollection 2025.

Abstract

With the digital transformation of the financial industry, credit score prediction, as a key component of risk management, faces increasingly complex challenges. Traditional credit scoring methods often have difficulty in fully capturing the characteristics of large-scale, high-dimensional financial data, resulting in limited prediction performance. To address these issues, this paper proposes a credit score prediction model that combines CNNs and BiGRUs, and uses the GWO algorithm for hyperparameter tuning. CNN performs well in feature extraction and can effectively capture patterns in customer historical behaviors, while BiGRU is good at handling time dependencies, which further improves the prediction accuracy of the model. The GWO algorithm is introduced to further improve the overall performance of the model by optimizing key parameters. Experimental results show that the CNN-BiGRU-GWO model proposed in this paper performs well on multiple public credit score datasets, significantly improving the accuracy and efficiency of prediction. On the LendingClub loan dataset, the MAE of this model is 15.63, MAPE is 4.65%, RMSE is 3.34, and MSE is 12.01, which are 64.5%, 68.0%, 21.4%, and 52.5% lower than the traditional method plawiak of 44.07, 14.51%, 4.25, and 25.29, respectively. In addition, compared with traditional methods, this model also shows stronger advantages in adaptability and generalization ability. By integrating advanced technologies, this model not only provides an innovative technical solution for credit score prediction, but also provides valuable insights into the application of deep learning in the financial field, making up for the shortcomings of existing methods and demonstrating its potential for wide application in financial risk management.

摘要

随着金融行业的数字化转型,信用评分预测作为风险管理的关键组成部分,面临着日益复杂的挑战。传统的信用评分方法往往难以充分捕捉大规模、高维金融数据的特征,导致预测性能有限。为了解决这些问题,本文提出了一种结合卷积神经网络(CNNs)和双向门控循环单元(BiGRUs)的信用评分预测模型,并使用灰狼优化(GWO)算法进行超参数调优。卷积神经网络在特征提取方面表现出色,能够有效捕捉客户历史行为中的模式,而双向门控循环单元擅长处理时间依赖性,进一步提高了模型的预测准确性。引入灰狼优化算法通过优化关键参数进一步提升模型的整体性能。实验结果表明,本文提出的卷积神经网络-双向门控循环单元-灰狼优化(CNN-BiGRU-GWO)模型在多个公共信用评分数据集上表现良好,显著提高了预测的准确性和效率。在LendingClub贷款数据集上,该模型的平均绝对误差(MAE)为15.63,平均绝对百分比误差(MAPE)为4.65%,均方根误差(RMSE)为3.34,均方误差(MSE)为12.01,分别比传统方法plawiak的44.07、14.51%、4.25和25.29低64.5%、68.0%、21.4%和52.5%。此外,与传统方法相比,该模型在适应性和泛化能力方面也表现出更强的优势。通过整合先进技术,该模型不仅为信用评分预测提供了一种创新的技术解决方案,还为深度学习在金融领域的应用提供了有价值的见解,弥补了现有方法的不足,并展示了其在金融风险管理中广泛应用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6f1/12112401/97930e05e036/pone.0322225.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验