Li Jianqiao, Huang Zhihao, Jiang Liang, Zhang Yonghong
Faculty of Engineering, Monash University, Clayton, VIC, 3800, Australia.
School of Automation, Nanjing University of Information Science and Technology, Nanjing, 210044, Jiangsu, China.
Sci Rep. 2025 Mar 24;15(1):10095. doi: 10.1038/s41598-025-92838-4.
Bearing fault diagnosis under multiple operating conditions is challenging due to the complexity of changing environments and the limited availability of training data. To address these issues, this paper presents an advanced diagnosis method using a hybrid Grey Wolf Algorithm (HGWA)-optimized convolutional neural network (CNN) and Bidirectional long short-term memory (BiLSTM) architecture. The proposed model leverages CNN for extracting spatial features and BiLSTM for capturing temporal dependencies. Through HGWA, hyperparameters are efficiently optimized, achieving 100% diagnostic accuracy across four operating conditions with the CWRU dataset. Additionally, the optimized CNN-BiLSTM model demonstrated high diagnostic accuracy when applied as a pre-trained model in new environments, even with minimal training data. The proposed model not only improves diagnostic performance but also enhances optimization efficiency, achieving faster results within the same time frame. This approach mitigates the challenges of manually tuning neural network hyperparameters and effectively addresses bearing fault diagnosis under constrained sample conditions, representing a meaningful contribution to the field of rolling bearing fault diagnostics.
由于运行环境变化的复杂性以及训练数据的有限可用性,多工况下的轴承故障诊断具有挑战性。为了解决这些问题,本文提出了一种先进的诊断方法,该方法使用混合灰狼算法(HGWA)优化的卷积神经网络(CNN)和双向长短期记忆(BiLSTM)架构。所提出的模型利用CNN提取空间特征,利用BiLSTM捕捉时间依赖性。通过HGWA,超参数得到了有效优化,在使用CWRU数据集的四种运行工况下实现了100%的诊断准确率。此外,优化后的CNN-BiLSTM模型在新环境中作为预训练模型应用时,即使训练数据很少,也表现出很高的诊断准确率。所提出的模型不仅提高了诊断性能,还提高了优化效率,在相同时间框架内获得了更快的结果。这种方法减轻了手动调整神经网络超参数的挑战,并有效解决了受限样本条件下的轴承故障诊断问题,为滚动轴承故障诊断领域做出了有意义的贡献。