Suppr超能文献

连接噬菌体生产模型与控制抗生素耐药细菌的实际应用。

Bridging phage production models and practical applications to control antibiotic-resistant bacteria.

作者信息

Wang Xiaoyu, Zhang Song, Ahn Juhee

机构信息

Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.

出版信息

Microbiol Res. 2025 Sep;298:128230. doi: 10.1016/j.micres.2025.128230. Epub 2025 May 20.

Abstract

The emergence of multidrug-resistant (MDR) bacteria represents a significant global health threat, demanding urgent development of alternative treatment strategies. Bacteriophages (phages) have gained attention as promising alternatives to antibiotics due to their specificity, abundance, and minimal side effects, leading to potential applications in food safety, agriculture, aquaculture, and clinical settings. However, the practical use of phage therapy is limited by challenges in efficiently producing phages, due to the complex and dynamic interactions between bacteria and phages. Therefore, this review aims to bridge the gap between theoretical models and practical applications by examining bacteria-phage interactions, focusing on the coevolution of bacteria and phages, their resistance mechanisms, and the environmental factors that influence these interactions. Differential and stochastic mathematical models were used to analyze essential kinetic parameters in phage production and to assess strategies for optimizing phage production and their application in controlling antibiotic-resistant infections. Additionally, mathematical modeling in phage-bacteria dynamics was provided, highlighting new kinetic models that incorporated the evolutionary trade-offs between antibiotic resistance and phage resistance. These models provide valuable insights into the factors that influence bacteria-phage interactions and assist in designing effective treatment strategies to optimize the clinical use of phages by predicting phage behavior and therapeutic effects. Therefore, mathematical modeling serves as an invaluable tool in advancing phage therapy. Further study is needed to increase phage production and improve therapy consistency for establishing phage therapy as a reliable solution for multidrug-resistant infections.

摘要

多重耐药(MDR)细菌的出现对全球健康构成了重大威胁,迫切需要开发替代治疗策略。噬菌体因其特异性、丰富性和最小的副作用,作为抗生素的有前景的替代品而受到关注,从而在食品安全、农业、水产养殖和临床环境中具有潜在应用。然而,由于细菌和噬菌体之间复杂且动态的相互作用,噬菌体疗法的实际应用受到高效生产噬菌体挑战的限制。因此,本综述旨在通过研究细菌与噬菌体的相互作用,弥合理论模型与实际应用之间的差距,重点关注细菌和噬菌体的共同进化、它们的抗性机制以及影响这些相互作用的环境因素。使用微分和随机数学模型来分析噬菌体生产中的基本动力学参数,并评估优化噬菌体生产及其在控制抗生素耐药性感染中的应用策略。此外,还提供了噬菌体 - 细菌动力学的数学建模,突出了纳入抗生素抗性和噬菌体抗性之间进化权衡的新动力学模型。这些模型为影响细菌 - 噬菌体相互作用的因素提供了有价值的见解,并通过预测噬菌体行为和治疗效果,协助设计有效的治疗策略以优化噬菌体在临床上的使用。因此,数学建模是推进噬菌体疗法的宝贵工具。需要进一步研究以增加噬菌体产量并提高治疗的一致性,从而将噬菌体疗法确立为多重耐药感染的可靠解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验