Suppr超能文献

系统不确定性下电动汽车需求侧管理与可再生资源的优化整合

Demand side management with electric vehicles and optimal renewable resources integration under system uncertainties.

作者信息

Eissa Mohamed Mostafa, Swief Rania Abdel Wahed, Salam Tarek Saad Abdel

机构信息

Electrical Engineering Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt.

出版信息

Sci Rep. 2025 May 27;15(1):18570. doi: 10.1038/s41598-025-00752-6.

Abstract

The rapid growth of integrating electrical vehicles (EVs) into the distribution network has introduced complexities and power flow inefficiencies. To address these challenges, optimal renewable energy resources (RERs) integration along with applied demand-side management (DSM) contribute to managing load profiles and generation thus reducing costs. This should be smartly attained through selecting efficient optimization techniques to improve power quality, voltage profile, and reliability. This paper aims to investigate the effect of integrating EVs and applying peak load shifting (PLS) as a DSM strategy with the optimal allocation of distributed energy resources, specifically wind and photovoltaic (PV) systems, as distributed generators (DGs) on distribution networks. Taking into consideration the stochastic behavior of RERs, EVs demand elasticity of charging and discharging scenarios and load variance. The main objective of this work focuses on power loss reduction and implementing PLS to flatten the load profile and form a new loadability to reduce costs. The study is demonstrated on a typical IEEE 69-bus system, considering the load, EVs, and RERs profiles during weekdays in winter and summer seasons. The study examines the optimal size and location of combining two DGs (wind and PV), in addition to incorporating bidirectional plug-in hybrid electric vehicles into the system. The study utilizes the Zebra optimization algorithm (ZOA), in comparison with the Whale optimization algorithm (WOA), Grey wolf optimization algorithm (GWO), and Genetic algorithm (GA). The latter is employed only as a reference for comparison. For each season, the simulation is divided into two parts, each part consists of four cases. Part (1) is simulated assuming constant power integration for the RERs while part (2) considers their stochastic behavior. Also, optimal charging strategies for EVs are examined for cost-effectiveness during high penetration levels for the IEEE 123-bus system. The results demonstrated the effectiveness of the proposed algorithm in reducing power loss. Moreover, shifting peak hours flattens the load profile, thereby reducing costs and power loss across the distribution network. Furthermore, the performance of the ZOA dominates the WOA, GWO, and GA.

摘要

将电动汽车(EV)接入配电网的快速发展带来了复杂性和功率流效率低下的问题。为应对这些挑战,优化可再生能源(RER)整合以及应用需求侧管理(DSM)有助于管理负荷曲线和发电量,从而降低成本。这需要通过选择高效的优化技术来巧妙实现,以提高电能质量、电压分布和可靠性。本文旨在研究将电动汽车整合以及应用作为一种DSM策略的峰值负荷转移(PLS),同时将分布式能源资源(特别是风能和光伏(PV)系统)作为分布式发电机(DG)进行优化配置对配电网的影响。考虑到可再生能源的随机行为、电动汽车充放电场景的需求弹性以及负荷变化。这项工作主要目标集中在降低功率损耗以及实施PLS来平坦负荷曲线并形成新的负荷承载能力以降低成本。该研究在一个典型的IEEE 69节点系统上进行展示,考虑了冬季和夏季工作日期间的负荷、电动汽车和可再生能源曲线。该研究除了将双向插电式混合动力汽车纳入系统外,还研究了组合两种分布式发电机(风能和光伏)的最佳规模和位置。该研究使用了斑马优化算法(ZOA),并与鲸鱼优化算法(WOA)、灰狼优化算法(GWO)和遗传算法(GA)进行比较。后者仅作为比较的参考。对于每个季节,模拟分为两部分,每部分由四种情况组成。第(1)部分在假设可再生能源进行恒定功率整合的情况下进行模拟,而第(2)部分考虑其随机行为。此外,还针对IEEE 123节点系统在高渗透率水平下电动汽车的成本效益最佳充电策略进行了研究。结果证明了所提算法在降低功率损耗方面的有效性。此外,转移高峰时段可使负荷曲线平坦化,从而降低整个配电网的成本和功率损耗。此外,ZOA的性能优于WOA、GWO和GA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b157/12116743/fa64b5581039/41598_2025_752_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验