Suppr超能文献

基于空间的自然和人为引起的储水量变化量化。

Space-based natural and human-induced water storage change quantification.

作者信息

Schumacher Maike, van Dijk Albert I J M, Retegui-Schiettekatte Leire, Yang Fan, Forootan Ehsan

机构信息

Geodesy Group, Department of Sustainability and Planning, Aalborg University, Rendburggade 14, 9000, Aalborg, Denmark.

Fenner School of Environment and Society, College of Science, Australian National University, Canberra, 2600, Australia.

出版信息

Sci Rep. 2025 May 27;15(1):18484. doi: 10.1038/s41598-025-01938-8.

Abstract

Understanding water availability and its response to climate change and water extraction is crucial for sustainable water management in Australia's Murray-Darling Basin. This study introduces a space-based method that quantifies the natural and human-induced impact on changes in terrestrial water storage. It reveals an impact of 17% due to water extraction for irrigation over the past two decades, with 84% of this extraction coming from surface water and 16% from groundwater. The human-induced impact varies spatially with higher values in the southern Murray (up to 5.6%) and smaller values in the northern Darling (down to 0.2%). Data-model fusion of the satellite-based water storage changes into a hydrological model, which does not simulate water extraction, man-made reservoirs and wetlands, improved the representation of water storage variability and intensified trends in drying and wetting periods. This study adds valuable findings to better understand natural and human-induced impacts on the regional water resources under changing climate and to better represent these impacts (80% and 20% respectively) within hydrological models after data-model fusion.

摘要

了解水资源可利用情况及其对气候变化和取水的响应,对澳大利亚墨累 - 达令盆地的可持续水资源管理至关重要。本研究引入了一种天基方法,该方法可量化自然和人为因素对陆地储水量变化的影响。研究表明,在过去二十年中,灌溉取水对陆地储水量变化产生了17%的影响,其中84%的取水来自地表水,16%来自地下水。人为影响在空间上存在差异,墨累河以南地区的影响值较高(高达5.6%),达令河北部地区的影响值较小(低至0.2%)。将基于卫星的储水量变化数据与水文模型进行融合,该水文模型未模拟取水、人工水库和湿地,改进了对储水量变化的表征,并强化了干湿期的趋势。本研究提供了有价值的发现,有助于更好地理解在气候变化情况下自然和人为因素对区域水资源的影响,并在数据 - 模型融合后,在水文模型中更好地体现这些影响(分别为80%和20%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70ad/12117041/44d5d1fc7586/41598_2025_1938_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验