Suppr超能文献

利用遥感和机器学习评估气候和土地利用对地表产水量的影响。

Assessing climate and land use impacts on surface water yield using remote sensing and machine learning.

作者信息

Bojer Amanuel Kumsa, Abshare Muluneh Woldetsadik, Mesfin Fitsum, Al-Quraishi Ayad M Fadhil

机构信息

Department of Geography and Environmental Studies, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.

Ethiopian Artificial Intelligence Institute, PO Box 40782, Addis Ababa, Ethiopia.

出版信息

Sci Rep. 2025 May 27;15(1):18477. doi: 10.1038/s41598-025-03493-8.

Abstract

Climate and land use changes are critical factors affecting watershed water yields, with significant implications for water resources at both local and regional levels. This study examined the combined effects of temporal and spatial climate variability and land use/land cover (LULC) changes on surface water yield and availability in the Gilgel Gibe watershed, Ethiopia, from 1993 to 2023. Utilizing the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) hydrological models, machine learning, and remote sensing techniques, this study assessed variations in water resources and their impacts on basin water yield. This study utilized Landsat (30 m), MODIS (500 m-1 km), and 4 km resolution climate datasets from the United States Geological Survey (USGS) and NASA POWER for large-scale climate and land-use analyses from 1993 to 2023. An ensemble of machine learning models, including Random Forest (RF), Support Vector Machine (SVM), and XGBoost (XGB), were used to evaluate the effects of climate variability and land use on annual water yield. The study revealed significant land cover changes over a 30-year period. Shrubland decreased from 1,108.37 km (21.54%) in 1993 to 295.22 km (5.74%) in 2023. Grasslands and wetlands also showed declining trends. In contrast, water bodies increased from 12.51 km (0.24%) to 41.57 km (0.81%), primarily due to the construction of the Gilgel Gibe hydroelectric dam, and forested areas slightly decreased from 626.73 km (12.18%) to 534.18 km (10.38%). The surface runoff decreased to 15.78% in 2021 and 15.28% in 2022, whereas the water yield dropped from 1.22% in 1993 to 0.83% by 2023. This study also showed a reduction in lateral flow and higher evapotranspiration levels in 2000 and 2017. The decrease in runoff can be attributed to the loss of wetlands and grasslands, reduced precipitation, and regulatory effects of hydropower operations. In contrast, elevated evapotranspiration levels were primarily attributed to temperature extremes, vegetation stress, and potential increases in irrigation practices. These findings underscore the importance of climatic elements in regulating river discharge and the necessity for smart land use planning to prevent negative environmental consequences on water resources.

摘要

气候和土地利用变化是影响流域产水量的关键因素,对地方和区域层面的水资源都有重大影响。本研究考察了1993年至2023年期间,埃塞俄比亚吉尔格尔吉贝流域气候的时空变异性与土地利用/土地覆盖(LULC)变化对地表水产量和可利用性的综合影响。本研究利用生态系统服务与权衡综合评估(InVEST)水文模型、机器学习和遥感技术,评估了水资源的变化及其对流域产水量的影响。本研究使用了美国地质调查局(USGS)和美国国家航空航天局动力环境遥感数据集(NASA POWER)的陆地卫星(30米)、中分辨率成像光谱仪(MODIS)(500米至1千米)以及4千米分辨率的气候数据集,用于1993年至2023年的大规模气候和土地利用分析。包括随机森林(RF)、支持向量机(SVM)和极端梯度提升(XGB)在内的一组机器学习模型,被用于评估气候变异性和土地利用对年水产量的影响。研究揭示了30年间显著的土地覆盖变化。灌丛地面积从1993年的1108.37平方千米(21.54%)降至2023年的295.22平方千米(5.74%)。草地和湿地面积也呈下降趋势。相比之下,水体面积从12.51平方千米(0.24%)增加到41.57平方千米(0.81%),这主要归因于吉尔格尔吉贝水电站的建设,而森林面积略有减少,从6,26.73平方千米(12.18%)降至534.18平方千米(10.38%)。地表径流在2021年降至15.78%,在2022年降至15.28%,而产水量从1993年的1.22%降至2023年的0.83%。本研究还表明,2000年和2017年侧向流量减少,蒸发散水平升高。径流减少可归因于湿地和草地的流失、降水量减少以及水电运营的调节作用。相比之下,蒸发散水平升高主要归因于极端温度、植被胁迫以及灌溉实践可能增加。这些发现强调了气候要素在调节河流流量方面的重要性,以及进行明智的土地利用规划以防止对水资源产生负面环境影响的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e60/12116945/2d4dd7ea149c/41598_2025_3493_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验