Codazzi Valentina, Baldoni Nicola, Scotti Giulia M, Giovenzana Anna, Rigamonti Andrea, Frontino Giulio, Bezzecchi Eugenia, Genzano Camillo Bechi, Mandelli Alessandra, Carnovale Debora, Marzinotto Ilaria, Lampasona Vito, Fiorina Paolo, Giustina Andrea, Piemonti Lorenzo, Battaglia Manuela, Morelli Marco J, Bonfanti Riccardo, Petrelli Alessandra
IRCCS San Raffaele Scientific Institute, Milan, Italy.
University of Milan, Milan, Italy.
Commun Med (Lond). 2025 May 27;5(1):201. doi: 10.1038/s43856-025-00922-7.
Type 1 Diabetes (T1D) exhibits considerable heterogeneity, impacting prediction, prevention, diagnosis, and treatment. Precision medicine aims to tailor treatments using 'endotypes'-subtypes of disease with distinct pathophysiological mechanisms. However, proposed endotypes often lack mechanistic associations with clinical outcomes for accurately identifying T1D cases.
This study introduces an approach leveraging the multi-omics factor analysis (MOFA) strategy, a computational method for unsupervised integration analysis, to explore endotypes. Analyzing data from 146 new-onset children with T1D (54 females, 92 males; age range 5-18 years), including circulating immunome, transcriptome, and serum metabolic hormones, we identify 12 factors explaining variability across the three data sets.
Here we find no associations, either direct or through clustering, between these 12 factors and clinical parameters, genetic predisposition, or disease outcome. These results suggest that a combination of clinical phenotypes might be responsible for the differences across T1D cases.
These findings challenge the assumption that T1D heterogeneity reflects diverse developmental mechanisms. These results add to the ongoing debate on endotypes and carry important implications for clinical trial design-particularly in how treatments are evaluated for their effectiveness across broad and diverse patient populations.
1型糖尿病(T1D)表现出相当大的异质性,影响预测、预防、诊断和治疗。精准医学旨在使用“内型”(具有不同病理生理机制的疾病亚型)来定制治疗方案。然而,所提出的内型往往缺乏与临床结局的机制关联,难以准确识别T1D病例。
本研究引入一种利用多组学因子分析(MOFA)策略的方法,这是一种用于无监督整合分析的计算方法,以探索内型。分析来自146名新发病的T1D儿童(54名女性,92名男性;年龄范围5 - 18岁)的数据,包括循环免疫组、转录组和血清代谢激素,我们确定了12个解释三个数据集变异性的因子。
在此我们发现这12个因子与临床参数、遗传易感性或疾病结局之间不存在直接关联或通过聚类的关联。这些结果表明,临床表型的组合可能是T1D病例差异的原因。
这些发现挑战了T1D异质性反映不同发育机制的假设。这些结果为正在进行的关于内型的辩论增添了内容,并对临床试验设计具有重要意义,特别是在如何评估治疗在广泛和多样的患者群体中的有效性方面。