Suppr超能文献

胶质母细胞瘤与患者预期寿命的血液微环境预测模型

Glioblastoma and Blood Microenvironment Predictive Model for Life Expectancy of Patients.

作者信息

Chernov Alexander N, Skliar Sofia S, Yatskou Mikalai M, Skakun Victor V, Pyurveev Sarng S, Batotsyrenova Ekaterina G, Zheregelya Sergey N, Liu Guodong, Kashuro Vadim A, Ivanov Dmitry O, Ivanov Sergey D

机构信息

Biological Chemistry Department, Federal State Budgetary Educational Institution of Higher Education Saint Petersburg State Pediatric Medical University of the Ministry of Health of Russia, 194100 Saint Petersburg, Russia.

Department of General Pathology and Pathophysiology, Federal State Budgetary Institution of Science "Institute of Experimental Medicine", 197022 Saint Petersburg, Russia.

出版信息

Biomedicines. 2025 Apr 25;13(5):1040. doi: 10.3390/biomedicines13051040.

Abstract

Glioblastoma multiforme (GBM) is a very malignant brain tumor. GBM exhibits cellular and molecular heterogeneity that can be exploited to improve patient outcomes by individually tailoring chemotherapy regimens. Our objective was to develop a predictive model of the life expectancy of GBM patients using data on tumor cells' sensitivity to chemotherapy drugs, as well as the levels of blood cells and proteins forming the tumor microenvironment. The investigation included 31 GBM patients from the Almazov Medical Research Centre (Saint Petersburg, Russia). The cytotoxic effects of chemotherapy drugs on GBM cells were studied by an MTT test using a 50% inhibitory concentration (IC). We analyzed the data with life expectancy by a one-way ANOVA, principal component analysis (PCA), ROC, and Kaplan-Meier survival tests using GraphPad Prism and Statistica 10 software. We determined in vitro the IC of six chemotherapy drugs for GBM and 32 clinical and biochemical blood indicators for these patients. This model includes an assessment of only three parameters: IC of tumor cells to carboplatin (CARB) higher than 4.115 μg/mL, as well as levels of band neutrophils (NEUT-B) below 2.5% and total protein (TP) above 64.5 g/L in the blood analysis, which allows predicting with 83.3% probability (sensitivity) the life expectancy of patients for 15 months or more. In opposite, a change in these parameters-CARB above 4115 μg/mL, NEUT-B below 2.5%, and TP above 64.5 g/L-predict with 83.3% probability (specificity) no survival rate of GBM patients for more than 15 months. The relative risk for CARB was 6.41 (95 CI: 4.37-8.47, = 0.01); for NEUT-B, the RR was 0.40 (95 CI: 0.26-0.87, = 0.09); and for TP, it was 2.88 (95 CI: 1.57-4.19, = 0.09). Overall, the model predicted the risk of developing a positive event (an outcome with a life expectancy more than 10 months) eight times (95 CI 6.34-9.66, < 0.01). Cross k-means validation on three clusters (n = 10) of the model showed that its average accuracy (sensitivity and specificity) for cluster 1 was 74.98%; for cluster 2, it was 66.7%; and for cluster 3, it was 60.0%. At the same time, the differences between clusters 1, 2, and 3 were not significant. The results of the Sobel test show that there are no interactions between the components of the model, and each component is an independent factor influencing the event (life expectancy, survival) of GBM patients. A simple predictive model for GBM patients' life expectancy has been developed using statistical analysis methods.

摘要

多形性胶质母细胞瘤(GBM)是一种恶性程度很高的脑肿瘤。GBM表现出细胞和分子异质性,可通过个性化定制化疗方案来利用这一特性改善患者预后。我们的目标是利用肿瘤细胞对化疗药物的敏感性数据以及构成肿瘤微环境的血细胞和蛋白质水平,建立一个GBM患者预期寿命的预测模型。该研究纳入了来自阿尔马佐夫医学研究中心(俄罗斯圣彼得堡)的31例GBM患者。采用50%抑制浓度(IC)的MTT试验研究了化疗药物对GBM细胞的细胞毒性作用。我们使用GraphPad Prism和Statistica 10软件,通过单因素方差分析、主成分分析(PCA)、ROC和Kaplan-Meier生存试验对预期寿命数据进行了分析。我们在体外确定了六种化疗药物对GBM的IC以及这些患者的32项临床和生化血液指标。该模型仅包括对三个参数的评估:肿瘤细胞对卡铂(CARB)的IC高于4.115μg/mL,以及血液分析中杆状中性粒细胞(NEUT-B)水平低于2.5%和总蛋白(TP)高于64.5g/L,这使得以83.3%的概率(敏感性)预测患者15个月及以上的预期寿命成为可能。相反,这些参数的变化——CARB高于4115μg/mL、NEUT-B低于2.5%和TP高于64.5g/L——以83.3%的概率(特异性)预测GBM患者的生存率不超过15个月。CARB的相对风险为6.41(95%CI:4.37 - 8.47,P = 0.01);NEUT-B的RR为0.40(95%CI:0.26 - 0.87,P = 0.09);TP的RR为2.88(95%CI:1.57 - 4.19,P = 0.09)。总体而言,该模型预测发生阳性事件(预期寿命超过10个月的结果)的风险为8倍(95%CI 6.34 - 9.66,P < 0.01)。对模型的三个聚类(n = 10)进行交叉k均值验证表明,其对聚类1的平均准确率(敏感性和特异性)为74.98%;对聚类2为66.7%;对聚类3为60.0%。同时,聚类1、2和3之间的差异不显著。Sobel检验结果表明,模型各成分之间不存在相互作用,每个成分都是影响GBM患者事件(预期寿命、生存)的独立因素。利用统计分析方法建立了一个简单的GBM患者预期寿命预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/218f/12108703/9ecf884e01da/biomedicines-13-01040-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验