Suppr超能文献

使用双分支卷积神经网络和机器学习模型的人工智能驱动的阻塞性睡眠呼吸暂停检测

AI-Driven Detection of Obstructive Sleep Apnea Using Dual-Branch CNN and Machine Learning Models.

作者信息

Kolhar Manjur, Alfridan Manahil Muhammad, Siraj Rayan A

机构信息

Department of Health Information Management and Technology, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 36362, Saudi Arabia.

Department of Respiratory Therapy, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 36362, Saudi Arabia.

出版信息

Biomedicines. 2025 Apr 30;13(5):1090. doi: 10.3390/biomedicines13051090.

Abstract

The purpose of this research is to compare and contrast the application of machine learning and deep learning methodologies such as a dual-branch convolutional neural network (CNN) model for detecting obstructive sleep apnea (OSA) from electrocardiogram (ECG) data. This approach solves the limitations of conventional polysomnography (PSG) and presents a non-invasive method for detecting OSA in its early stages with the help of AI. The research shows that both CNN and dual-branch CNN models can identify OSA from ECG signals. The CNN model achieves validation and test accuracy of about 93% and 94%, respectively, whereas the dual-branch CNN model achieves 93% validation and 94% test accuracy. Furthermore, the dual-branch CNN obtains a ROC AUC score of 0.99, meaning that it is better at distinguishing between apnea and non-apnea cases. The results show that CNN models, especially the dual-branch CNN, are effective in apnea classification and better than traditional methods. In addition, our proposed model has the potential to be used as a reliable, non-invasive method for accurate OSA detection that is even better than the current state-of-the-art advanced methods.

摘要

本研究的目的是比较和对比机器学习和深度学习方法(如用于从心电图(ECG)数据中检测阻塞性睡眠呼吸暂停(OSA)的双分支卷积神经网络(CNN)模型)的应用。这种方法解决了传统多导睡眠图(PSG)的局限性,并借助人工智能提出了一种在早期阶段检测OSA的非侵入性方法。研究表明,CNN和双分支CNN模型都可以从ECG信号中识别OSA。CNN模型的验证准确率和测试准确率分别约为93%和94%,而双分支CNN模型的验证准确率和测试准确率为93%和94%。此外,双分支CNN的ROC AUC得分为0.99,这意味着它在区分呼吸暂停和非呼吸暂停病例方面表现更好。结果表明,CNN模型,尤其是双分支CNN,在呼吸暂停分类方面是有效的,并且优于传统方法。此外,我们提出的模型有潜力作为一种可靠的、非侵入性的方法用于准确的OSA检测,甚至比当前最先进的方法还要好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/152a/12108708/61f91f18085c/biomedicines-13-01090-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验