Artificial Intelligence Center, China Medical University Hospital, No. 2, Yude Rd, North Dist, Taichung, Taiwan.
Sleep Medicine Center, Department of Pulmonary and Critical Care Medicine, China Medical University Hospital, No. 2, Yude Rd., North Dist, Taichung, Taiwan.
Biomed Eng Online. 2024 Jun 20;23(1):57. doi: 10.1186/s12938-024-01252-w.
Our objective was to create a machine learning architecture capable of identifying obstructive sleep apnea (OSA) patterns in single-lead electrocardiography (ECG) signals, exhibiting exceptional performance when utilized in clinical data sets.
We conducted our research using a data set consisting of 1656 patients, representing a diverse demographic, from the sleep center of China Medical University Hospital. To detect apnea ECG segments and extract apnea features, we utilized the EfficientNet and some of its layers, respectively. Furthermore, we compared various training and data preprocessing techniques to enhance the model's prediction, such as setting class and sample weights or employing overlapping and regular slicing. Finally, we tested our approach against other literature on the Apnea-ECG database.
Our research found that the EfficientNet model achieved the best apnea segment detection using overlapping slicing and sample-weight settings, with an AUC of 0.917 and an accuracy of 0.855. For patient screening with AHI > 30, we combined the trained model with XGBoost, leading to an AUC of 0.975 and an accuracy of 0.928. Additional tests using PhysioNet data showed that our model is comparable in performance to existing models regarding its ability to screen OSA levels.
Our suggested architecture, coupled with training and preprocessing techniques, showed admirable performance with a diverse demographic dataset, bringing us closer to practical implementation in OSA diagnosis. Trial registration The data for this study were collected retrospectively from the China Medical University Hospital in Taiwan with approval from the institutional review board CMUH109-REC3-018.
我们的目标是创建一种机器学习架构,能够在单导联心电图(ECG)信号中识别阻塞性睡眠呼吸暂停(OSA)模式,并在临床数据集上表现出卓越的性能。
我们使用来自中国医科大学附属医院睡眠中心的 1656 名患者的数据集进行研究,这些患者代表了不同的人群。为了检测呼吸暂停 ECG 段并提取呼吸暂停特征,我们分别使用了 EfficientNet 及其一些层。此外,我们比较了各种训练和数据预处理技术,以增强模型的预测能力,例如设置类和样本权重,或采用重叠和规则切片。最后,我们将我们的方法与 Apnea-ECG 数据库上的其他文献进行了比较。
我们的研究发现,EfficientNet 模型在使用重叠切片和样本权重设置时实现了最佳的呼吸暂停段检测,AUC 为 0.917,准确率为 0.855。对于 AHI>30 的患者筛选,我们将训练好的模型与 XGBoost 结合使用,得到 AUC 为 0.975,准确率为 0.928。使用 PhysioNet 数据进行的额外测试表明,我们的模型在筛查 OSA 水平方面的性能与现有模型相当。
我们提出的架构结合了训练和预处理技术,在具有不同人群数据集的情况下表现出了令人钦佩的性能,使我们更接近于在 OSA 诊断中的实际应用。
这项研究的数据是从中国台湾的中国医科大学附属医院回顾性收集的,得到了机构审查委员会 CMUH109-REC3-018 的批准。