Suppr超能文献

不同机器学习技术对局限性肾细胞癌行部分肾切除术后肾小球滤过率的预测

Prediction of Glomerular Filtration Rate Following Partial Nephrectomy for Localized Renal Cell Carcinoma with Different Machine Learning Techniques.

作者信息

Ślusarczyk Aleksander, Sharma Sumit, Garbas Karolina, Piekarczyk Hanna, Zapała Piotr, Shi Jinhao, Radziszewski Piotr, Qu Le, Zapała Łukasz

机构信息

Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland.

Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.

出版信息

Cancers (Basel). 2025 May 13;17(10):1647. doi: 10.3390/cancers17101647.

Abstract

: Partial nephrectomy (PN) is the preferred option for treating localized cT1 renal cell carcinoma (RCC), as it preserves renal function in most patients and offers non-inferior oncological outcomes compared to radical nephrectomy. In this study, we aimed to construct a predictive model for estimating the glomerular filtration rate (GFR) at one year after PN in patients with RCC, using various machine learning techniques. : Retrospective data were collected from two academic centers, covering surgeries performed between 2010 and 2022. GFR was estimated using the Chronic Kidney Disease Epidemiology Collaboration 2021 (CKD-EPI) formula. Univariable linear regression (LR) was used to identify significant clinical predictors of 1-year postoperative GFR, followed by multivariable LR. The dataset was split into training and testing cohorts in a 70:30 ratio. Internal validation was performed on the test cohort, and various machine learning methods, including artificial neural networks (ANNs), support vector machines (SVMs), random forests (RFs), and XGBoost, were compared. : Among 615 patients treated with PN, 415 had complete follow-up GFR data and were included in the analysis. Only 8.7% of patients experienced significant GFR loss (>30% decrease) at 1 year. Multivariable LR identified baseline GFR (Estimate: 0.76, < 0.001), tumor diameter on imaging (Estimate: -1.65, = 0.005), and Charlson Comorbidity Index (Estimate: -1.95, < 0.001) as independent predictors of 1-year GFR (R = 0.67). A 10-fold cross-validation of the multivariable model yielded an R of 0.68. In the testing cohort, ANN, SVM, RF, and XGBoost did not outperform the LR model, with R values of 0.68, 0.66, 0.64, and 0.55, respectively. : Preoperative factors, including baseline GFR, tumor size on imaging, and Charlson Comorbidity Index, are effective predictors of GFR at 1 year following PN. Our study demonstrates that a conventional LR model based on preoperative variables provides acceptable accuracy for predicting GFR after PN and is not inferior to more complex machine learning techniques.

摘要

部分肾切除术(PN)是治疗局限性cT1期肾细胞癌(RCC)的首选方案,因为它能在大多数患者中保留肾功能,并且与根治性肾切除术相比,肿瘤学结局不逊色。在本研究中,我们旨在使用各种机器学习技术构建一个预测模型,以估计RCC患者PN术后一年的肾小球滤过率(GFR)。

从两个学术中心收集回顾性数据,涵盖2010年至2022年期间进行的手术。使用慢性肾脏病流行病学协作组2021(CKD-EPI)公式估计GFR。单变量线性回归(LR)用于确定术后1年GFR的显著临床预测因素,随后进行多变量LR。数据集以70:30的比例分为训练和测试队列。在测试队列上进行内部验证,并比较各种机器学习方法,包括人工神经网络(ANN)、支持向量机(SVM)、随机森林(RF)和XGBoost。

在615例行PN治疗的患者中,415例有完整的随访GFR数据并纳入分析。仅8.7%的患者在1年时出现显著的GFR下降(下降>30%)。多变量LR确定基线GFR(估计值:0.76,<0.001)、影像学上的肿瘤直径(估计值:-1.65,=0.005)和Charlson合并症指数(估计值:-1.95,<0.001)为1年GFR的独立预测因素(R=0.67)。多变量模型的10折交叉验证得出R值为0.68。在测试队列中,ANN、SVM、RF和XGBoost的表现均未超过LR模型,其R值分别为0.68、0.66、0.64和0.55。

术前因素,包括基线GFR、影像学上的肿瘤大小和Charlson合并症指数,是PN术后1年GFR的有效预测因素。我们的研究表明,基于术前变量的传统LR模型在预测PN术后GFR方面具有可接受的准确性,且不逊色于更复杂的机器学习技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf10/12110722/4968576fc2c5/cancers-17-01647-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验