Ślusarczyk Aleksander, Sharma Sumit, Garbas Karolina, Piekarczyk Hanna, Zapała Piotr, Shi Jinhao, Radziszewski Piotr, Qu Le, Zapała Łukasz
Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland.
Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
Cancers (Basel). 2025 May 13;17(10):1647. doi: 10.3390/cancers17101647.
: Partial nephrectomy (PN) is the preferred option for treating localized cT1 renal cell carcinoma (RCC), as it preserves renal function in most patients and offers non-inferior oncological outcomes compared to radical nephrectomy. In this study, we aimed to construct a predictive model for estimating the glomerular filtration rate (GFR) at one year after PN in patients with RCC, using various machine learning techniques. : Retrospective data were collected from two academic centers, covering surgeries performed between 2010 and 2022. GFR was estimated using the Chronic Kidney Disease Epidemiology Collaboration 2021 (CKD-EPI) formula. Univariable linear regression (LR) was used to identify significant clinical predictors of 1-year postoperative GFR, followed by multivariable LR. The dataset was split into training and testing cohorts in a 70:30 ratio. Internal validation was performed on the test cohort, and various machine learning methods, including artificial neural networks (ANNs), support vector machines (SVMs), random forests (RFs), and XGBoost, were compared. : Among 615 patients treated with PN, 415 had complete follow-up GFR data and were included in the analysis. Only 8.7% of patients experienced significant GFR loss (>30% decrease) at 1 year. Multivariable LR identified baseline GFR (Estimate: 0.76, < 0.001), tumor diameter on imaging (Estimate: -1.65, = 0.005), and Charlson Comorbidity Index (Estimate: -1.95, < 0.001) as independent predictors of 1-year GFR (R = 0.67). A 10-fold cross-validation of the multivariable model yielded an R of 0.68. In the testing cohort, ANN, SVM, RF, and XGBoost did not outperform the LR model, with R values of 0.68, 0.66, 0.64, and 0.55, respectively. : Preoperative factors, including baseline GFR, tumor size on imaging, and Charlson Comorbidity Index, are effective predictors of GFR at 1 year following PN. Our study demonstrates that a conventional LR model based on preoperative variables provides acceptable accuracy for predicting GFR after PN and is not inferior to more complex machine learning techniques.
部分肾切除术(PN)是治疗局限性cT1期肾细胞癌(RCC)的首选方案,因为它能在大多数患者中保留肾功能,并且与根治性肾切除术相比,肿瘤学结局不逊色。在本研究中,我们旨在使用各种机器学习技术构建一个预测模型,以估计RCC患者PN术后一年的肾小球滤过率(GFR)。
从两个学术中心收集回顾性数据,涵盖2010年至2022年期间进行的手术。使用慢性肾脏病流行病学协作组2021(CKD-EPI)公式估计GFR。单变量线性回归(LR)用于确定术后1年GFR的显著临床预测因素,随后进行多变量LR。数据集以70:30的比例分为训练和测试队列。在测试队列上进行内部验证,并比较各种机器学习方法,包括人工神经网络(ANN)、支持向量机(SVM)、随机森林(RF)和XGBoost。
在615例行PN治疗的患者中,415例有完整的随访GFR数据并纳入分析。仅8.7%的患者在1年时出现显著的GFR下降(下降>30%)。多变量LR确定基线GFR(估计值:0.76,<0.001)、影像学上的肿瘤直径(估计值:-1.65,=0.005)和Charlson合并症指数(估计值:-1.95,<0.001)为1年GFR的独立预测因素(R=0.67)。多变量模型的10折交叉验证得出R值为0.68。在测试队列中,ANN、SVM、RF和XGBoost的表现均未超过LR模型,其R值分别为0.68、0.66、0.64和0.55。
术前因素,包括基线GFR、影像学上的肿瘤大小和Charlson合并症指数,是PN术后1年GFR的有效预测因素。我们的研究表明,基于术前变量的传统LR模型在预测PN术后GFR方面具有可接受的准确性,且不逊色于更复杂的机器学习技术。