Tang Lin, Zhu Li, Basang Zhuzha, Zhao Yunong, Li Shanshan, Kong Xiaoyan, Gou Xiao
Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
College of Animal Science, Xichang University, Xichang 615000, China.
Animals (Basel). 2025 May 13;15(10):1407. doi: 10.3390/ani15101407.
The Tibetan goat () exhibits remarkable adaptations to high-altitude hypoxia, yet the molecular mechanisms remain unclear. This study integrates RNA-seq, WGCNA, and machine learning to explore gene-environment interactions (G × E) in hypoxia adaptation. Fibroblasts from the Tibetan goat and Yunling goat were cultured under hypoxic (1% O) and normoxic (21% O) conditions, respectively. This identified 68 breed-specific (G), 100 oxygen-responsive (E), and 620 interaction-driven (I) Differentially Expressed Genes (DEGs). The notably higher number of interaction-driven DEGs compared to other effects highlights transcriptional plasticity. We defined two gene sets: Environmental Stress Genes ( = 632, E ∪ I) and Genetic Adaptation Genes ( = 659, G ∪ I). The former were significantly enriched in pathways related to oxidative stress defense and metabolic adaptation, while the latter showed prominent enrichment in pathways associated with vascular remodeling and transcriptional regulation. emerged as a key regulatory factor in both gene sets, interacting with and to form the core of the protein-protein interaction (PPI) network. Machine learning identified , , and as critical genes. WGCNA identified key modules in hypoxia adaptation, where , , and promote the stabilization of and metabolic adaptation through the HIF-1 signaling pathway and glycolysis. These findings underscore the pivotal role of gene-environment interactions in hypoxic adaptation, offering novel perspectives for both livestock breeding programs and biomedical research initiatives.
藏山羊()对高海拔缺氧表现出显著的适应性,但其分子机制尚不清楚。本研究整合了RNA测序、加权基因共表达网络分析(WGCNA)和机器学习,以探索缺氧适应中的基因-环境相互作用(G×E)。分别在缺氧(1%O)和常氧(21%O)条件下培养藏山羊和云岭山羊的成纤维细胞。这鉴定出68个品种特异性(G)、100个氧反应性(E)和620个相互作用驱动(I)的差异表达基因(DEG)。与其他效应相比,相互作用驱动的DEG数量显著更多,这突出了转录可塑性。我们定义了两个基因集:环境应激基因(=632,E∪I)和遗传适应基因(=659,G∪I)。前者在与氧化应激防御和代谢适应相关的通路中显著富集,而后者在与血管重塑和转录调控相关的通路中显示出显著富集。在两个基因集中均作为关键调节因子出现,与和相互作用形成蛋白质-蛋白质相互作用(PPI)网络的核心。机器学习确定、、和为关键基因。WGCNA确定了缺氧适应中的关键模块,其中、和通过缺氧诱导因子-1(HIF-1)信号通路和糖酵解促进的稳定和代谢适应。这些发现强调了基因-环境相互作用在缺氧适应中的关键作用,为畜牧育种计划和生物医学研究计划提供了新的视角。