Ogola Henry Joseph Oduor, Selvarajan Ramganesh, Ncube Somandla, Madikizela Lawrence
Department of Environmental Sciences, College of Agriculture and Environmental Sciences (CAES), University of South Africa, Florida Science Campus, Johannesburg 1710, South Africa.
Institute of Deep-Sea Science and Engineering (IDSSE), Chinese Academy of Sciences (CAS), Sanya 572099, China.
Biology (Basel). 2025 May 5;14(5):503. doi: 10.3390/biology14050503.
Sulfur cycling is a fundamental biogeochemical process, yet its microbial underpinnings in environments like the Isinuka sulfur pool remain poorly understood. Using high-throughput Illumina 16S rRNA sequencing and PICRUSt-based functional inference, we analyzed bacterial diversity and metabolic potential in sediment and water samples. Sediments, characterized by high sulfide/sulfate/thiosulfate, salinity, alkalinity, and organic matter content under anoxic conditions, supported diverse sulfur-reducing and organic-degrading bacteria, primarily from the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. In contrast, the anoxic water column harbored a less diverse community dominated by α-, γ-, and β-Proteobacteria, including and . Sulfur oxidation genes (, ) were abundant in water, while sulfate reduction genes (, , and ) were concentrated in sediments. Core microbiome analysis identified , , and as functional keystones, integrating sulfur oxidation and nutrient recycling. Sediments supported dissimilatory sulfate-reducing bacteria (unclassified Desulfobacteraceae, , , , and ), while water samples were enriched in sulfur-oxidizing bacteria like . Metabolic profiling revealed extensive sulfur, nitrogen, and carbon cycling pathways, with sulfur autotrophic denitrification and anoxygenic photosynthesis coupling sulfur-nitrogen and sulfur-carbon cycles. This study provides key theoretical insights into the microbial dynamics in sulfur-rich environments, highlighting their roles in biogeochemical cycling and potential applications in environmental management.
硫循环是一个基本的生物地球化学过程,然而在伊西努卡硫池等环境中,其微生物基础仍知之甚少。我们使用高通量Illumina 16S rRNA测序和基于PICRUSt的功能推断,分析了沉积物和水样中的细菌多样性及代谢潜力。沉积物在缺氧条件下具有高硫化物/硫酸盐/硫代硫酸盐、盐度、碱度和有机质含量的特征,支持了多种硫还原菌和有机降解菌,主要来自变形菌门、厚壁菌门、拟杆菌门和放线菌门。相比之下,缺氧水柱中微生物群落的多样性较低,以α-、γ-和β-变形菌为主,包括[具体菌名缺失]和[具体菌名缺失]。硫氧化基因([具体基因缺失]、[具体基因缺失])在水中含量丰富,而硫酸盐还原基因([具体基因缺失]、[具体基因缺失]和[具体基因缺失])集中在沉积物中。核心微生物组分析确定[具体菌名缺失]、[具体菌名缺失]和[具体菌名缺失]为功能关键物种,整合了硫氧化和养分循环。沉积物中存在异化硫酸盐还原菌(未分类的脱硫杆菌科、[具体菌名缺失]、[具体菌名缺失]、[具体菌名缺失]和[具体菌名缺失]),而水样中富含硫氧化菌,如[具体菌名缺失]。代谢谱分析揭示了广泛的硫、氮和碳循环途径,硫自养反硝化和无氧光合作用将硫-氮和硫-碳循环耦合起来。这项研究为富硫环境中的微生物动态提供了关键的理论见解,突出了它们在生物地球化学循环中的作用以及在环境管理中的潜在应用。