革新大数据分析在个性化心血管医疗保健中的应用

Revolutionizing Utility of Big Data Analytics in Personalized Cardiovascular Healthcare.

作者信息

Sharma Praneel, Sharma Pratyusha, Sharma Kamal, Varma Vansh, Patel Vansh, Sarvaiya Jeel, Tavethia Jonsi, Mehta Shubh, Bhadania Anshul, Patel Ishan, Shah Komal

机构信息

Department of Information and Communication Technology, Dhirubhai Ambani Institute of Information and Communication Technology (DAIICT), Gandhinagar 382007, Gujarat, India.

Department of Computer Science & Engineering, Ahmedabad University, Ahmedabad 380009, Gujarat, India.

出版信息

Bioengineering (Basel). 2025 Apr 27;12(5):463. doi: 10.3390/bioengineering12050463.

Abstract

The term "big data analytics (BDA)" defines the computational techniques to study complex datasets that are too large for common data processing software, encompassing techniques such as data mining (DM), machine learning (ML), and predictive analytics (PA) to find patterns, correlations, and insights in massive datasets. Cardiovascular diseases (CVDs) are attributed to a combination of various risk factors, including sedentary lifestyle, obesity, diabetes, dyslipidaemia, and hypertension. We searched PubMed and published research using the Google and Cochrane search engines to evaluate existing models of BDA that have been used for CVD prediction models. We critically analyse the pitfalls and advantages of various BDA models using artificial intelligence (AI), machine learning (ML), and artificial neural networks (ANN). BDA with the integration of wide-ranging data sources, such as genomic, proteomic, and lifestyle data, could help understand the complex biological mechanisms behind CVD, including risk stratification in risk-exposed individuals. Predictive modelling is proposed to help in the development of personalized medicines, particularly in pharmacogenomics; understanding genetic variation might help to guide drug selection and dosing, with the consequent improvement in patient outcomes. To summarize, incorporating BDA into cardiovascular research and treatment represents a paradigm shift in our approach to CVD prevention, diagnosis, and management. By leveraging the power of big data, researchers and clinicians can gain deeper insights into disease mechanisms, improve patient care, and ultimately reduce the burden of cardiovascular disease on individuals and healthcare systems.

摘要

“大数据分析(BDA)”一词定义了用于研究复杂数据集的计算技术,这些数据集对于普通数据处理软件来说太大了,包括数据挖掘(DM)、机器学习(ML)和预测分析(PA)等技术,以在海量数据集中找到模式、相关性和见解。心血管疾病(CVD)归因于多种风险因素的综合作用,包括久坐不动的生活方式、肥胖、糖尿病、血脂异常和高血压。我们使用谷歌和考克兰搜索引擎在PubMed及已发表的研究中进行搜索,以评估已用于CVD预测模型的现有BDA模型。我们批判性地分析了使用人工智能(AI)、机器学习(ML)和人工神经网络(ANN)的各种BDA模型的缺陷和优势。整合广泛数据源(如基因组、蛋白质组和生活方式数据)的BDA有助于理解CVD背后的复杂生物学机制,包括对暴露于风险中的个体进行风险分层。有人提出预测建模有助于开发个性化药物,尤其是在药物基因组学方面;了解基因变异可能有助于指导药物选择和给药,从而改善患者预后。总之,将BDA纳入心血管研究和治疗代表了我们在CVD预防、诊断和管理方法上的范式转变。通过利用大数据的力量,研究人员和临床医生可以更深入地了解疾病机制,改善患者护理,并最终减轻心血管疾病对个人和医疗系统的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/141b/12108848/49d213cd0a21/bioengineering-12-00463-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索