Suppr超能文献

基于常规可用临床信息的血管内血栓切除术术后90天死亡率预测机器学习模型的识别与患者获益评估

Identification and Patient Benefit Evaluation of Machine Learning Models for Predicting 90-Day Mortality After Endovascular Thrombectomy Based on Routinely Ready Clinical Information.

作者信息

Ng Andrew Tik Ho, Chan Lawrence Wing Chi

机构信息

Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China.

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.

出版信息

Bioengineering (Basel). 2025 Apr 28;12(5):468. doi: 10.3390/bioengineering12050468.

Abstract

Endovascular thrombectomy (EVT) is regarded as the standard of care for acute ischemic stroke (AIS) patients with large vessel occlusion (LVO). However, the mortality rates for these patients remain alarmingly high. Dependable mortality prediction based on timely clinical information is of great importance. This study retrospectively reviewed 151 patients who underwent EVT at Pamela Youde Nethersole Eastern Hospital between 1 April 2017, and 31 October 2023. The primary outcome of this study was 90-day mortality after AIS. The models were developed using two feature selection approaches (model I: sequential forward feature selection, model II: sequential forward feature selection after identifying variables through univariate logistic regression) and six algorithms. Model performance was evaluated by using external validation data of 312 cases and compared with three traditional prediction scores. This study identified support vector machine (SVM) using model II as the best algorithm among the various options. Meanwhile, the Houston Intra-Arterial recanalization 2 (HIAT2) score surpassed all algorithms with an AUC of 0.717. However, most algorithms provided a greater net benefit than the traditional prediction scores. Machine learning (ML) algorithms developed with routinely available variables could offer beneficial insights for predicting mortality in AIS patients undergoing EVT.

摘要

血管内血栓切除术(EVT)被视为患有大血管闭塞(LVO)的急性缺血性卒中(AIS)患者的护理标准。然而,这些患者的死亡率仍然高得惊人。基于及时临床信息的可靠死亡率预测至关重要。本研究回顾性分析了2017年4月1日至2023年10月31日期间在东区尤德夫人那打素医院接受EVT治疗的151例患者。本研究的主要结局是AIS后90天死亡率。使用两种特征选择方法(模型I:顺序向前特征选择,模型II:通过单变量逻辑回归识别变量后进行顺序向前特征选择)和六种算法构建模型。通过使用312例病例的外部验证数据评估模型性能,并与三个传统预测评分进行比较。本研究确定,在各种选项中,使用模型II的支持向量机(SVM)是最佳算法。同时,休斯顿动脉内再通2(HIAT2)评分的曲线下面积(AUC)为0.717,超过了所有算法。然而,大多数算法比传统预测评分提供了更大的净效益。利用常规可用变量开发的机器学习(ML)算法可为预测接受EVT治疗的AIS患者的死亡率提供有益见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d20/12109170/29f638e6c23c/bioengineering-12-00468-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验