Suppr超能文献

基于粒子群优化-全变差有限元多尺度分解-谱熵-时频峰值滤波和快速时频注意力-长短期记忆网络的微机电系统环形陀螺仪温度补偿方法

Temperature Compensation Method for MEMS Ring Gyroscope Based on PSO-TVFEMD-SE-TFPF and FTTA-LSTM.

作者信息

Huang Hongqiao, Ye Wen, Liu Li, Wang Wenjing, Wang Yan, Cao Huiliang

机构信息

Key Laboratory of Instrumentation Science & Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China.

National Institute of Metrology, China, 18 North Third Ring East Road, Chaoyang District, Beijing 100029, China.

出版信息

Micromachines (Basel). 2025 Apr 26;16(5):507. doi: 10.3390/mi16050507.

Abstract

This study proposes a novel parallel denoising and temperature compensation fusion algorithm for MEMS ring gyroscopes. First, the particle swarm optimization (PSO) algorithm is used to optimize the time-varying filter-based empirical mode decomposition (TVFEMD), obtaining optimal decomposition parameters. Then, TVFEMD decomposes the gyroscope output signal into a series of product function (PF) signals and a residual signal. Next, sample entropy (SE) is employed to classify the decomposed signals into three categories: noise segment, mixed segment, and feature segment. According to the parallel model structure, the noise segment is directly discarded. Meanwhile, time-frequency peak filtering (TFPF) is applied to denoise the mixed segment, while the feature segment undergoes compensation. For compensation, the football team training algorithm (FTTA) is used to optimize the parameters of the long short-term memory (LSTM) neural network, forming a novel FTTA-LSTM architecture. Both simulations and experimental results validate the effectiveness of the proposed algorithm. After processing the MEMS gyroscope output signal using the PSO-TVFEMD-SE-TFPF denoising algorithm and the FTTA-LSTM temperature drift compensation model, the angular random walk (ARW) of the MEMS gyroscope is reduced to 0.02°/√h, while the bias instability (BI) decreases to 2.23°/h. Compared to the original signal, ARW and BI are reduced by 99.43% and 97.69%, respectively. The proposed fusion-based temperature compensation method significantly enhances the temperature stability and noise performance of the gyroscope.

摘要

本研究提出了一种用于MEMS环形陀螺仪的新型并行去噪与温度补偿融合算法。首先,使用粒子群优化(PSO)算法优化基于时变滤波器的经验模式分解(TVFEMD),获得最优分解参数。然后,TVFEMD将陀螺仪输出信号分解为一系列乘积函数(PF)信号和一个残余信号。接下来,采用样本熵(SE)将分解后的信号分为三类:噪声段、混合段和特征段。根据并行模型结构,直接丢弃噪声段。同时,应用时频峰值滤波(TFPF)对混合段进行去噪,而对特征段进行补偿。对于补偿,使用足球队训练算法(FTTA)优化长短期记忆(LSTM)神经网络的参数,形成一种新型的FTTA-LSTM架构。仿真和实验结果均验证了所提算法的有效性。使用PSO-TVFEMD-SE-TFPF去噪算法和FTTA-LSTM温度漂移补偿模型对MEMS陀螺仪输出信号进行处理后,MEMS陀螺仪的角随机游走(ARW)降至0.02°/√h,而偏置不稳定性(BI)降至2.23°/h。与原始信号相比,ARW和BI分别降低了99.43%和97.69%。所提基于融合的温度补偿方法显著提高了陀螺仪的温度稳定性和噪声性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bd8/12113624/615d6b13a8bb/micromachines-16-00507-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验