Suppr超能文献

基于经验模态分解(EMD)-Transformer-双向长短期记忆网络(BiLSTM)的短期空气质量预测

Short-term air quality prediction based on EMD-transformer-BiLSTM.

作者信息

Dong Jie, Zhang Yaoli, Hu Jiang

机构信息

Fudan University, Shanghai, 200433, China.

Zhongnan University of Economics and Law, Wuhan, 430073, China.

出版信息

Sci Rep. 2024 Sep 3;14(1):20513. doi: 10.1038/s41598-024-67626-1.

Abstract

Actual acquired air quality time series data are highly volatile and nonstationary, and accurately predicting nonlinear time series data containing complex noise is an ongoing challenge. This paper proposes an air quality prediction method based on empirical mode decomposition (EMD), a transformer and a bidirectional long short-term memory neural network (BiLSTM), which is good at addressing the ultrashort-term prediction of nonlinear time-series data and shows good performance for application to the air quality dataset of Patna, India (6:00 am on October 3, 2015-0:00 pm on July 1, 2020). The AQI sequence is first decomposed into intrinsic mode functions (IMFs) via EMD and subsequently predicted separately via the improved transformer algorithm based on BiLSTM, where linear prediction is performed for IMFs with simple trends. Finally, the predicted values of each IMF are integrated using BiLSTM to obtain the predicted AQI values. This paper predicts the AQI in Patna with a time window of 5 h, and the RMSE, MAE and MAPE are as low as 5.6853, 2.8230 and 2.23%, respectively. Moreover, the scalability of the proposed model is validated on air quality datasets from several other cities, and the results prove that the proposed hybrid model has high performance and broad application prospects in real-time air quality prediction.

摘要

实际获取的空气质量时间序列数据具有高度的波动性和非平稳性,准确预测包含复杂噪声的非线性时间序列数据是一个持续存在的挑战。本文提出了一种基于经验模态分解(EMD)、Transformer和双向长短期记忆神经网络(BiLSTM)的空气质量预测方法,该方法擅长处理非线性时间序列数据的超短期预测,并在应用于印度巴特那的空气质量数据集(2015年10月3日上午6:00 - 2020年7月1日下午0:00)时表现出良好的性能。首先通过EMD将空气质量指数(AQI)序列分解为固有模态函数(IMF),然后通过基于BiLSTM的改进Transformer算法分别对其进行预测,其中对趋势简单的IMF进行线性预测。最后,使用BiLSTM对每个IMF的预测值进行整合,以获得预测的AQI值。本文以5小时的时间窗口预测了巴特那的AQI,均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)分别低至5.6853、2.8230和2.23%。此外,在所提出模型的可扩展性在其他几个城市的空气质量数据集上得到了验证,结果证明所提出的混合模型在实时空气质量预测中具有高性能和广阔的应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验