Suppr超能文献

温度对芯吸动力学的影响:微柱结构表面的实验与数值研究

Temperature Effects on Wicking Dynamics: Experimental and Numerical Study on Micropillar-Structured Surfaces.

作者信息

Lee Yoomyeong, Park Hyunmuk, Nam Hyeon Taek, Kim Yong-Hyeon, Ahn Jae-Hwan, Lee Donghwi

机构信息

Graduate School of Mechanical-Aerospace-Electric Convergence Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea.

Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

出版信息

Micromachines (Basel). 2025 Apr 27;16(5):512. doi: 10.3390/mi16050512.

Abstract

Boiling heat transfer, utilizing latent heat during phase change, has widely been used due to its high thermal efficiency and plays an important role in existing and next-generation cooling technologies. The most critical parameter in boiling heat transfer is critical heat flux (CHF), which represents the maximum heat flux a heated surface can sustain during boiling. CHF is primarily influenced by the wicking performance, which governs liquid supply to the surface. This study experimentally and numerically analyzed the wicking performance of micropillar structures at various temperatures (20-95 °C) using distilled water as the working fluid to provide fundamental data for CHF prediction. Infrared (IR) visualization was used to extract the wicking coefficient, and the experimental data were compared with computational fluid dynamics (CFD) simulations for validation. At room temperature (20 °C), the wicking coefficient increased with larger pillar diameters (D) and smaller gaps (G). Specifically, the highest roughness factor sample (D04G10, = 2.51) exhibited a 117% higher wicking coefficient than the lowest roughness factor sample (D04G20, = 1.51), attributed to enhanced capillary pressure and improved liquid supply. Additionally, for the same surface roughness factor, the wicking coefficient increased with temperature, showing a 49% rise at 95 °C compared to 20 °C due to reduced viscous resistance. CFD simulations showed strong agreement with experiments, with error within ±10%. These results confirm that the proposed numerical methodology is a reliable tool for predicting wicking performance near boiling temperatures.

摘要

沸腾传热利用相变过程中的潜热,因其高热效率而被广泛应用,在现有和下一代冷却技术中发挥着重要作用。沸腾传热中最关键的参数是临界热流密度(CHF),它表示受热表面在沸腾过程中能够承受的最大热流密度。CHF主要受芯吸性能的影响,芯吸性能决定了液体向表面的供应。本研究以蒸馏水为工作流体,通过实验和数值分析了微柱结构在不同温度(20 - 95°C)下的芯吸性能,为CHF预测提供基础数据。利用红外(IR)可视化技术提取芯吸系数,并将实验数据与计算流体动力学(CFD)模拟结果进行比较以进行验证。在室温(20°C)下,芯吸系数随着柱径(D)增大和间隙(G)减小而增加。具体而言,粗糙度因子最高的样品(D04G10, = 2.51)的芯吸系数比粗糙度因子最低的样品(D04G20, = 1.51)高117%,这归因于毛细管压力的增强和液体供应的改善。此外,对于相同的表面粗糙度因子,芯吸系数随温度升高而增加,95°C时比20°C时升高了49%,这是由于粘性阻力减小。CFD模拟结果与实验结果高度吻合,误差在±10%以内。这些结果证实,所提出的数值方法是预测接近沸腾温度时芯吸性能的可靠工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b425/12114549/277440e5368c/micromachines-16-00512-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验