Suppr超能文献

通过单过渡金属原子修饰WS提高电催化NO还原为NH₃的性能:一项密度泛函理论研究

Boosting the Performance of Electrocatalytic NO Reduction to NH by Decorating WS with Single Transition Metal Atoms: A DFT Study.

作者信息

Tursun Mamutjan, Abduryim Ayxamgul, Wu Chao

机构信息

Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.

Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.

出版信息

Materials (Basel). 2025 May 17;18(10):2341. doi: 10.3390/ma18102341.

Abstract

Ammonia (NH) is a crucial feedstock in chemical manufacturing. The electrocatalytic NO reduction reaction (eNORR) to NH represents a promising alternative method for the green production of NH and for environmental management. This study presents a comprehensive investigation of eNORR properties of single transition metal atoms deposited on WS nanosheets (TM@WS). Our results indicate that 19 single TM atoms exhibit strong thermal stability. Among these, five specific TM@WS catalysts-Ti, Mn, Co, Zr, and Hf-demonstrate remarkable eNORR activity, with limiting potentials of 0, -0.19, -0.26, 0, and -0.15 V, respectively. These catalysts effectively suppress the formation of byproducts (NO/N) and the hydrogen evolution reaction (HER), thereby ensuring high NH selectivity. Our theoretical study confirms that TM@WS catalysts are highly promising for achieving high activity, selectivity, and stability in eNORR, providing valuable insights for future experimental investigations into efficient NH production.

摘要

氨(NH₃)是化学制造中的一种关键原料。将电催化NO还原反应(eNORR)转化为NH₃代表了一种绿色生产NH₃和环境治理的有前景的替代方法。本研究对沉积在WS₂纳米片上的单过渡金属原子(TM@WS₂)的eNORR性质进行了全面研究。我们的结果表明,19种单TM原子表现出很强的热稳定性。其中,五种特定的TM@WS₂催化剂——Ti、Mn、Co、Zr和Hf——表现出显著的eNORR活性,其极限电位分别为0、-0.19、-0.26、0和-0.15 V。这些催化剂有效地抑制了副产物(NO₂⁻/N₂)的形成和析氢反应(HER),从而确保了高NH₃选择性。我们的理论研究证实,TM@WS₂催化剂在eNORR中实现高活性、选择性和稳定性方面具有很大潜力,为未来高效NH₃生产的实验研究提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8049/12113338/1c4bf8c23fec/materials-18-02341-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验