Li Renyi, Guo Wei
Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
Phys Chem Chem Phys. 2022 Jun 1;24(21):13384-13398. doi: 10.1039/d2cp01446g.
The electrocatalytic nitrogen reduction reaction (NRR), as an alternative green technology to the Haber-Bosch process, can efficiently synthesize ammonia under ambient conditions and has a reduced carbon footprint. Here we systematically investigate the NRR activity and selectivity of transition metal (TM) single-atom catalyst (SAC) anchored WS monolayers (TM@WS) by means of first-principles calculations and microkinetic modeling. The construction of the reaction activity trend and the identification of an activity descriptor, namely *NH adsorption energy, facilitate the efficient screening and rational design of SACs with high activity. Manipulating the adsorption strength of the pivotal NH intermediate is a potential strategy for enhancing NRR activity. Utilizing the limiting potential difference of NRR and the hydrogen evolution reaction (HER) as a selectivity descriptor, we screen three SACs with excellent activity and selectivity toward NRR, , Re@WS, Os@WS and Ir@WS with favorable limiting potentials of -0.44 V, -0.38 V and -0.69 V. By using the explicit HO model, the kinetic barriers of the rate-determining steps (0.47 eV-1.15 eV) of the solvated proton transfer on the screened SACs are found to be moderate, indicative of a kinetically feasible process. Microkinetic modeling shows that the turnover frequencies of N reduction to NH on Re@WS, Os@WS and Ir@WS are 1.52 × 10, 8.21 × 10 and 4.17 × 10 per s per site at 400 K, achieving fast reaction rates. The coexistence of empty and occupied 5d orbitals of candidate SACs is beneficial for donation and π backdonation, endowing them with extraordinary N adsorption and activation. Moreover, the screened SACs possess good dispersity and thermodynamic stability. Our work provides a promising solution for the efficient screening and rational design of high-performance electrocatalysts toward the NRR.
作为哈伯-博施法的一种替代绿色技术,电催化氮还原反应(NRR)能够在环境条件下高效合成氨,并减少碳足迹。在此,我们通过第一性原理计算和微观动力学建模,系统地研究了锚定在WS单层上的过渡金属(TM)单原子催化剂(SAC)(TM@WS)的NRR活性和选择性。反应活性趋势的构建以及活性描述符(即NH吸附能)的确定,有助于高效筛选和合理设计具有高活性的SAC。调控关键NH中间体的吸附强度是提高NRR活性的一种潜在策略。利用NRR与析氢反应(HER)的极限电位差作为选择性描述符,我们筛选出了三种对NRR具有优异活性和选择性的SAC,即Re@WS、Os@WS和Ir@WS,其极限电位分别为-0.44 V、-0.38 V和-0.69 V。通过使用显式HO模型,发现筛选出的SAC上溶剂化质子转移的速率决定步骤的动力学势垒(0.47 eV - 1.15 eV)适中,表明该过程在动力学上是可行的。微观动力学建模表明,在400 K时,Re@WS、Os@WS和Ir@WS上N还原为NH的周转频率分别为每位点每秒1.52×10、8.21×10和4.17×10,实现了快速反应速率。候选SAC的空5d轨道和占据5d轨道的共存有利于电子给予和π*反馈给予,赋予它们非凡的N吸附和活化能力。此外,筛选出的SAC具有良好的分散性和热力学稳定性。我们的工作为高效筛选和合理设计用于NRR的高性能电催化剂提供了一个有前景的解决方案。