Suppr超能文献

通过将硝酸盐还原过程分为两个阶段,在硝酸锌电池系统中实现高效氨合成和能量供应。

Enabled Efficient Ammonia Synthesis and Energy Supply in a Zinc-Nitrate Battery System by Separating Nitrate Reduction Process into Two Stages.

作者信息

Jiang Haifeng, Chen Gao-Feng, Savateev Oleksandr, Xue Jian, Ding Liang-Xin, Liang Zhenxing, Antonietti Markus, Wang Haihui

机构信息

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.

Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

出版信息

Angew Chem Int Ed Engl. 2023 Mar 20;62(13):e202218717. doi: 10.1002/anie.202218717. Epub 2023 Feb 16.

Abstract

The aqueous electrocatalytic reduction of NO into NH (NitrRR) presents a sustainable route applicable to NH production and potentially energy storage. However, the NitrRR involves a directly eight-electron transfer process generally required a large overpotential (<-0.2 V versus reversible hydrogen electrode (vs. RHE)) to reach optimal efficiency. Here, inspired by biological nitrate respiration, the NitrRR was separated into two stages along a [2+6]-electron pathway to alleviate the kinetic barrier. The system employed a Cu nanowire catalyst produces NO and NH with current efficiencies of 91.5 % and 100 %, respectively at lower overpotentials (>+0.1 vs. RHE). The high efficiency for such a reduction process was further explored in a zinc-nitrate battery. This battery could be specified by a high output voltage of 0.70 V, an average energy density of 566.7 Wh L at 10 mA cm and a power density of 14.1 mW cm , which is well beyond all previously reported similar concepts.

摘要

将NO电催化还原为NH₃(氮还原反应)提供了一条适用于NH₃生产及潜在储能的可持续途径。然而,氮还原反应涉及一个直接的八电子转移过程,通常需要较大的过电位(相对于可逆氢电极(vs. RHE)<-0.2 V)才能达到最佳效率。在此,受生物硝酸盐呼吸作用的启发,氮还原反应沿着[2+6]电子路径被分为两个阶段,以缓解动力学障碍。该系统采用铜纳米线催化剂,在较低过电位(相对于RHE>+0.1 V)下分别以91.5%和100%的电流效率产生NO₂⁻和NH₃。在硝酸锌电池中进一步探索了这种还原过程的高效率。该电池的特点是输出电压高达0.70 V,在10 mA cm⁻²时平均能量密度为566.7 Wh L⁻¹,功率密度为14.1 mW cm⁻²,这远远超过了此前报道的所有类似概念。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验