Czerwiński Michał, Filipow Mateusz, Łuczak Klaudia, Węgłowska Dorota
Institute of Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland.
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
Materials (Basel). 2025 May 17;18(10):2343. doi: 10.3390/ma18102343.
Ferroelectric liquid crystals (FLCs) are key materials for high-speed electro-optical applications, yet achieving optimal properties over a broad temperature range down below room temperature remains a challenge. This study presents a novel series of systematically designed FLC mixtures, incorporating components with three degrees of chirality-achiral systems, with one center of chirality and with two centers of chirality-to optimize the mesomorphic stability, electro-optical response, and physicochemical properties. The strategic doping by chiral components up to a 0.2 weight fraction extends the temperature range of the ferroelectric phase while lowering the melting temperature. Notably, mixtures containing two chiral centers exhibit shorter helical pitches, while increasing chirality enhances the tilt angle of the director and spontaneous polarization. However, in a mixture containing all three types of chirality (CchM), spontaneous polarization decreases due to opposing vector contributions. Switching time analysis reveals that a system with achiral components and those with two centers of chirality (A-BchM) exhibits the fastest response, while CchM demonstrates only intermediary behavior, caused by its high rotational viscosity. Among all formulations, those containing compounds with two centers of chirality display the most favorable balance of functional properties for deformed helix ferroelectric liquid crystal (DHFLC) applications. One such mixture achieves the lowest melting temperature reported for DHFLC-compatible FLCs, enabling operation at sub-zero temperatures. These findings pave the way for next-generation electro-optical devices with enhanced performance and appropriate environmental stability.
铁电液晶(FLC)是高速电光应用的关键材料,但要在低于室温的宽温度范围内实现最佳性能仍是一项挑战。本研究提出了一系列新的经过系统设计的FLC混合物,其中包含具有三种手性程度的成分——非手性体系、具有一个手性中心和具有两个手性中心的体系——以优化介晶稳定性、电光响应和物理化学性质。通过手性成分进行高达0.2重量分数的策略性掺杂,可扩展铁电相的温度范围,同时降低熔点。值得注意的是,含有两个手性中心的混合物表现出较短的螺旋节距,而增加手性会增强指向矢的倾斜角和自发极化。然而,在包含所有三种手性类型的混合物(CchM)中,由于矢量贡献相反,自发极化会降低。开关时间分析表明,具有非手性成分的体系和具有两个手性中心的体系(A-BchM)表现出最快的响应,而CchM仅表现出中间行为,这是由其高旋转粘度引起的。在所有配方中,含有具有两个手性中心的化合物的配方对于变形螺旋铁电液晶(DHFLC)应用显示出最有利的功能特性平衡。一种这样的混合物实现了与DHFLC兼容的FLC所报道的最低熔点,能够在零下温度下运行。这些发现为具有增强性能和适当环境稳定性的下一代电光器件铺平了道路。