Suppr超能文献

硬碳中的协同氮掺杂与缺陷工程:解锁钠离子电池负极的超高倍率性能和长循环稳定性

Synergistic Nitrogen-Doping and Defect Engineering in Hard Carbon: Unlocking Ultrahigh Rate Capability and Long-Cycling Stability for Sodium-Ion Battery Anodes.

作者信息

Li Na, Li Hongpeng, Huang Haibo

机构信息

Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China.

School of Automotive Engineering, Nantong Institute of Technology, Nantong 226001, China.

出版信息

Materials (Basel). 2025 May 21;18(10):2397. doi: 10.3390/ma18102397.

Abstract

Hard carbon (HC) anodes for sodium-ion batteries (SIBs) face challenges such as sluggish Na⁺ diffusion kinetics and structural instability. Herein, we propose a synergistic nitrogen-doping and defect-engineering strategy to unlock ultrahigh-rate capability and long-term cyclability in biomass-derived hard carbon. A scalable synthesis route is developed via hydrothermal carbonization of corn stalk, followed by controlled pyrolysis with urea, achieving uniform nitrogen incorporation into the carbon matrix. Comprehensive characterization reveals that nitrogen doping introduces tailored defects, expands interlayer spacing, and optimizes surface pseudocapacitance. The resultant N-doped hard carbon (NC-2) delivers a remarkable reversible capacity of 259 mAh g at 0.1 A g with 91% retention after 100 cycles. And analysis demonstrates a dual Na⁺ storage mechanism combining surface-driven pseudocapacitive adsorption (89% contribution at 1.0 mV s) and diffusion-controlled intercalation facilitated by reduced charge transfer resistance (56.9 Ω) and enhanced ionic pathways. Notably, NC-2 exhibits exceptional rate performance (124.0 mAh g at 1.0 A g) and sustains 95% capacity retention over 500 cycles at 1.0 A g. This work establishes a universal defect-engineering paradigm for carbonaceous materials, offering fundamental insights into structure-property correlations and paving the way for sustainable, high-performance SIB anodes.

摘要

用于钠离子电池(SIB)的硬碳(HC)负极面临着诸如Na⁺扩散动力学迟缓以及结构不稳定等挑战。在此,我们提出一种协同氮掺杂和缺陷工程策略,以实现生物质衍生硬碳的超高倍率性能和长期循环稳定性。通过玉米秸秆的水热碳化,随后用尿素进行可控热解,开发出一种可扩展的合成路线,实现氮均匀掺入碳基体。全面表征表明,氮掺杂引入了定制的缺陷,扩大了层间距,并优化了表面赝电容。所得的氮掺杂硬碳(NC-2)在0.1 A g下具有259 mAh g的出色可逆容量,100次循环后保持率为91%。分析表明其具有双重Na⁺存储机制,结合了表面驱动的赝电容吸附(在1.0 mV s时贡献89%)以及由降低的电荷转移电阻(56.9 Ω)和增强的离子通道促进的扩散控制嵌入。值得注意的是,NC-2表现出卓越的倍率性能(在1.0 A g下为124.0 mAh g),并在1.0 A g下500次循环中保持95%的容量保持率。这项工作为碳质材料建立了一种通用的缺陷工程范例,为结构-性能相关性提供了基本见解,并为可持续的高性能SIB负极铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c381/12113528/1a861c5833c7/materials-18-02397-sch001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验