Suppr超能文献

RDW-YOLO:一种用于可扩展农业害虫监测与控制的深度学习框架。

RDW-YOLO: A Deep Learning Framework for Scalable Agricultural Pest Monitoring and Control.

作者信息

Song Jiaxin, Cheng Ke, Chen Fei, Hua Xuecheng

机构信息

School of Computer, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

出版信息

Insects. 2025 May 21;16(5):545. doi: 10.3390/insects16050545.

Abstract

Due to target diversity, life-cycle variations, and complex backgrounds, traditional pest detection methods often struggle with accuracy and efficiency. This study introduces RDW-YOLO, an improved pest detection algorithm based on YOLO11, featuring three key innovations. First, the Reparameterized Dilated Fusion Block (RDFBlock) enhances feature extraction via multi-branch dilated convolutions for fine-grained pest characteristics. Second, the DualPathDown (DPDown) module integrates hybrid pooling and convolution for better multi-scale adaptability. Third, an enhanced Wise-Wasserstein IoU (WWIoU) loss function optimizes the matching mechanism and improves bounding-box regression. Experiments on the enhanced IP102 dataset show that RDW-YOLO achieves an mAP@0.5 of 71.3% and an mAP@0.5:0.95 of 50.0%, surpassing YOLO11 by 3.1% and 2.0%, respectively. The model also adopts a lightweight design and has a computational complexity of 5.6 G, ensuring efficient deployment without sacrificing accuracy. These results highlight RDW-YOLO's potential for precise and efficient pest detection in sustainable agriculture.

摘要

由于目标的多样性、生命周期的变化以及复杂的背景,传统的害虫检测方法在准确性和效率方面常常面临困难。本研究介绍了RDW-YOLO,一种基于YOLO11改进的害虫检测算法,具有三项关键创新。首先,重参数化扩张融合模块(RDFBlock)通过多分支扩张卷积增强特征提取,以获取细粒度的害虫特征。其次,双路径下采样(DPDown)模块集成了混合池化和卷积,以实现更好的多尺度适应性。第三,增强的Wise-Wasserstein交并比(WWIoU)损失函数优化了匹配机制,改进了边界框回归。在增强的IP102数据集上的实验表明,RDW-YOLO的mAP@0.5达到71.3%,mAP@0.5:0.95达到50.0%,分别比YOLO11高出3.1%和2.0%。该模型还采用了轻量级设计,计算复杂度为5.6 G,确保在不牺牲准确性的前提下实现高效部署。这些结果凸显了RDW-YOLO在可持续农业中进行精确高效害虫检测的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/650a/12112463/0f756f8aac4f/insects-16-00545-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验