Chen Lihua, Sun Qi, Han Ziyang, Zhai Fengwen
School of Information Science & Technology, Southwest Jiaotong University, Chengdu 611756, China.
CRSC Research & Design Institute Group Co., Ltd., Beijing 100070, China.
Sensors (Basel). 2025 Mar 28;25(7):2139. doi: 10.3390/s25072139.
To enable accurate and efficient real-time detection of rail fastener defects under resource-constrained environments, we propose DP-YOLO, an advanced lightweight algorithm based on YOLOv5s with four key optimizations. First, we design a Depthwise Separable Convolution Stage Partial (DSP) module that integrates depthwise separable convolution with a CSP residual connection strategy, reducing model parameters while enhancing recognition accuracy. Second, we introduce a Position-Sensitive Channel Attention (PSCA) mechanism, which calculates spatial statistics (mean and standard deviation) across height and width dimensions for each channel feature map. These statistics are multiplied across corresponding dimensions to generate channel-specific weights, enabling dynamic feature recalibration. Third, the Neck network adopts a GhostC3 structure, which reduces redundancy through linear operations, further minimizing computational costs. Fourth, to improve multi-scale adaptability, we replace the standard loss function with Alpha-IoU, enhancing model robustness. Experiments on the augmented Roboflow Universe Fastener-defect-detection Dataset demonstrate DP-YOLO's effectiveness: it achieves 87.1% detection accuracy, surpassing the original YOLOv5s by 1.3% in mAP0.5 and 2.1% in mAP0.5:0.95. Additionally, the optimized architecture reduces parameters by 1.3% and computational load by 15.19%. These results validate DP-YOLO's practical value for resource-efficient, high-precision defect detection in railway maintenance systems.
为了在资源受限的环境中实现对铁路扣件缺陷的准确高效实时检测,我们提出了DP - YOLO,这是一种基于YOLOv5s的先进轻量级算法,具有四项关键优化。首先,我们设计了一个深度可分离卷积阶段局部(DSP)模块,该模块将深度可分离卷积与CSP残差连接策略相结合,在减少模型参数的同时提高识别精度。其次,我们引入了位置敏感通道注意力(PSCA)机制,该机制针对每个通道特征图在高度和宽度维度上计算空间统计量(均值和标准差)。这些统计量在相应维度上相乘,以生成特定于通道的权重,从而实现动态特征重新校准。第三,颈部网络采用GhostC3结构,通过线性运算减少冗余,进一步降低计算成本。第四,为了提高多尺度适应性,我们用Alpha - IoU替换标准损失函数,增强模型的鲁棒性。在增强的Roboflow Universe扣件缺陷检测数据集上的实验证明了DP - YOLO的有效性:它实现了87.1%的检测准确率,在mAP0.5上比原始的YOLOv5s高出1.3%,在mAP0.5:0.95上高出2.1%。此外,优化后的架构将参数减少了1.3%,计算负载减少了15.19%。这些结果验证了DP - YOLO在铁路维护系统中进行资源高效、高精度缺陷检测的实用价值。