Lu Qianyi, Li Jian, Chen Wenli, Wang Zhuoru, Wang Di, Liu Chenyu, Sun Yue, Jiang Han, Zhang Caiyu, Chang Yetong, Zhou Jiajun, Wu Xiaohong, Gao Yue, Ning Shangwei
College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin 150081, China.
Int J Mol Sci. 2025 May 9;26(10):4557. doi: 10.3390/ijms26104557.
Long non-coding RNAs (lncRNAs) could alter the tumor immune microenvironment and regulate the expression of immune checkpoints (ICPs) by regulating target genes in tumors. However, only a few lncRNAs have precise functions in immunity and potential for predicting ICP inhibitors (ICI) response. Here, we developed a computational multi-step framework that leverages interaction network-based analysis to identify cancer- and immune-context ICP-related lncRNAs (NetLnc). Based on bulk and single-cell RNA sequencing data, these lncRNAs were significantly correlated with immune cell infiltration and immune expression signature. Specific hub ICP-related lncRNAs such as , , and could predict three- and five-year prognosis of melanoma in independent datasets. We also validated that some NetLnc-based predictions could better effectively predict ICI response compared to single molecules using three kinds of machine learning algorithms following independent datasets. Taken together, this study presents the use of a network-based framework to efficiently select ICP-related lncRNAs, which contributes to a comprehensive understanding of lncRNA functions and accelerates the discovery of lncRNA-based biomarkers in ICI treatment.
长链非编码RNA(lncRNAs)可通过调控肿瘤中的靶基因来改变肿瘤免疫微环境并调节免疫检查点(ICPs)的表达。然而,只有少数lncRNAs在免疫方面具有精确功能以及预测免疫检查点抑制剂(ICI)反应的潜力。在此,我们开发了一个多步骤计算框架,该框架利用基于相互作用网络的分析来识别癌症和免疫背景下与ICP相关的lncRNAs(NetLnc)。基于批量和单细胞RNA测序数据,这些lncRNAs与免疫细胞浸润和免疫表达特征显著相关。特定的枢纽ICP相关lncRNAs,如 、 和 ,可在独立数据集中预测黑色素瘤的三年和五年预后。我们还验证了,在独立数据集之后,使用三种机器学习算法,与单个分子相比,一些基于NetLnc的预测能够更好地有效预测ICI反应。综上所述,本研究展示了使用基于网络的框架来有效选择与ICP相关的lncRNAs,这有助于全面理解lncRNA的功能,并加速在ICI治疗中发现基于lncRNA的生物标志物。