Sah Ashok Kumar, Elshaikh Rabab H, Shalabi Manar G, Abbas Anass M, Prabhakar Pranav Kumar, Babker Asaad M A, Choudhary Ranjay Kumar, Gaur Vikash, Choudhary Ajab Singh, Agarwal Shagun
Department of Medical Laboratory Sciences, College of Applied & Health Sciences, A'Sharqiyah University, Ibra 400, Oman.
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakala 72388, Saudi Arabia.
Life (Basel). 2025 May 6;15(5):745. doi: 10.3390/life15050745.
The integration of artificial intelligence and personalized medicine is transforming HIV management by enhancing diagnostics, treatment optimization, and disease monitoring. Advances in machine learning, deep neural networks, and multi-omics data analysis enable precise prognostication, tailored antiretroviral therapy, and early detection of drug resistance. AI-driven models analyze vast genomic, proteomic, and clinical datasets to refine treatment strategies, predict disease progression, and pre-empt therapy failures. Additionally, AI-powered diagnostic tools, including deep learning imaging and natural language processing, improve screening accuracy, particularly in resource-limited settings. Despite these innovations, challenges such as data privacy, algorithmic bias, and the need for clinical validation remain. Successful integration of AI into HIV care requires robust regulatory frameworks, interdisciplinary collaboration, and equitable technology access. This review explores both the potential and limitations of AI in HIV management, emphasizing the need for ethical implementation and expanded research to maximize its impact. AI-driven approaches hold great promise for a more personalized, efficient, and effective future in HIV treatment and care.
人工智能与个性化医疗的融合正在通过加强诊断、优化治疗和疾病监测来改变艾滋病病毒的管理方式。机器学习、深度神经网络和多组学数据分析的进展使得精确预后、量身定制抗逆转录病毒疗法以及早期发现耐药性成为可能。人工智能驱动的模型分析大量的基因组、蛋白质组和临床数据集,以完善治疗策略、预测疾病进展并预防治疗失败。此外,人工智能驱动的诊断工具,包括深度学习成像和自然语言处理,提高了筛查准确性,尤其是在资源有限的环境中。尽管有这些创新,但数据隐私、算法偏差以及临床验证需求等挑战依然存在。将人工智能成功整合到艾滋病病毒护理中需要强大的监管框架、跨学科合作以及公平的技术获取途径。本综述探讨了人工智能在艾滋病病毒管理中的潜力和局限性,强调了道德实施和扩大研究以最大化其影响的必要性。人工智能驱动的方法在艾滋病病毒治疗和护理的更个性化、高效和有效的未来方面具有巨大潜力。
Therap Adv Gastroenterol. 2025-2-23
BMC Oral Health. 2025-4-18
Clin Chim Acta. 2025-6-15
Ann Med Surg (Lond). 2025-7-25
Diagnostics (Basel). 2025-8-19
Best Pract Res Clin Gastroenterol. 2025-2
BMJ Glob Health. 2025-4-9
NPJ Digit Med. 2025-3-11