Wan Zhongmin, Huang Zhongkai, Ou Changjie, Wang Lihua, Kong Xiangzhong, Zhan Zizhang, Tian Tian, Tang Haolin, Xie Shu, Luo Yongguang
College of Mechanical Engineering, School of Energy and Electrical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Molecules. 2025 May 8;30(10):2087. doi: 10.3390/molecules30102087.
The exploration of high-performance, low-cost, and dual-function electrodes is crucial for anion exchange membrane water electrolysis (AEMWE) to meet the relentless demand for green H production. In this study, a heteroatom-doped carbon-cage-supported CoSe@MoSe@NC catalyst with a formicarium structure has been fabricated using a scalable one-step selenization strategy. The component-refined bifunctional catalyst exhibited minimal overpotential values of 116 mV and 283 mV at 10 mA cm in 1 M KOH for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively. Specifically, rationally designed heterostructures and flexible carbonaceous sponges facilitate interfacial reaction equalization, modulate local electronic distributions, and establish efficient electron transport pathways, thereby enhancing catalytic activity and durability. Furthermore, the assembled AEMWE based on the CoSe@MoSe@NC bifunctional catalysts can achieve a current density of 106 mA cm at 1.9 V and maintain a favorable durability after running for 100 h (a retention of 95%). This work highlights a new insight into the development of advanced bifunctional catalysts with enhanced activity and durability for AEMWE.
探索高性能、低成本的双功能电极对于阴离子交换膜水电解(AEMWE)满足对绿色氢气生产的持续需求至关重要。在本研究中,采用可扩展的一步硒化策略制备了一种具有蚁巢结构的杂原子掺杂碳笼负载CoSe@MoSe@NC催化剂。这种成分优化的双功能催化剂在1 M KOH中,对于析氢反应(HER)和析氧反应(OER),在10 mA cm时分别表现出116 mV和283 mV的最小过电位值。具体而言,合理设计的异质结构和柔性碳质海绵促进界面反应均衡、调节局部电子分布并建立有效的电子传输途径,从而提高催化活性和耐久性。此外,基于CoSe@MoSe@NC双功能催化剂组装的AEMWE在1.9 V时可实现106 mA cm的电流密度,并在运行100 h后保持良好的耐久性(保留率95%)。这项工作为开发具有增强活性和耐久性的先进双功能催化剂用于AEMWE提供了新的见解。