Dong Zhiyong, Li Yuqing, Huang Renhai, Zhang Xuze, Li Mingyang, Liu Duo, Shi Rui, Zhu Xuanbo, Mu Jianxin, Qian Hujun
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Key Laboratory of High Performance Plastics, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Ministry of Education, Changchun 130012, China.
Polymers (Basel). 2025 May 9;17(10):1297. doi: 10.3390/polym17101297.
Designing high-performance crosslinked polymers requires overcoming the inherent stiffness-toughness trade-off through precise control of the network topology. Using epoxy resin as a model system, we establish a multiscale simulation framework to investigate curing reaction kinetics, network evolution, and structure-property relationships. By employing m-phenylenediamine (mPDA) and 1,3-bis(3-aminophenoxy)benzene (DABPB) as competing short- and long-chain curing agents, we demonstrate how network architecture dictates mechanical performance. Simulations reveal that mPDA produces a dense, heterogeneous network with enhanced stiffness, whereas DABPB forms a more uniform structure with greater chain mobility, leading to improved toughness. Through stoichiometric tuning, we achieve fine control over crosslink density and mechanical properties. Furthermore, we decouple cavity formation mechanisms into pendant chain slippage and bond rupture, offering molecular-level insights for the rational design of epoxy resins with programmable mechanical behavior.
设计高性能交联聚合物需要通过精确控制网络拓扑结构来克服固有的刚度-韧性权衡。以环氧树脂为模型体系,我们建立了一个多尺度模拟框架,以研究固化反应动力学、网络演化以及结构-性能关系。通过使用间苯二胺(mPDA)和1,3-双(3-氨基苯氧基)苯(DABPB)作为竞争性的短链和长链固化剂,我们展示了网络结构如何决定机械性能。模拟结果表明,mPDA产生了一个致密、不均匀的网络,刚度增强,而DABPB形成了一个更均匀的结构,链的流动性更大,从而提高了韧性。通过化学计量调整,我们实现了对交联密度和机械性能的精细控制。此外,我们将空洞形成机制解耦为侧链滑移和键断裂,为合理设计具有可编程机械行为的环氧树脂提供了分子水平的见解。