Suppr超能文献

基于生理的猴子和人类生物案例研究的药代动力学建模揭示了额外清除项的必要性。

Physiologically Based Pharmacokinetic Modeling of Biologic Case Studies in Monkeys and Humans Reveals the Necessity of an Additional Clearance Term.

作者信息

Stader Felix, Sharma Pradeep, Huang Weize, Choules Mary P, Willemin Marie-Emilie, Zhang Xinwen, Yau Estelle, Derbalah Abdallah, Zyla Adriana, Liu Cong, Sepp Armin

机构信息

Certara Predictive Technologies, Certara UK Ltd., Sheffield S1 2BJ, UK.

Clinical Pharmacology and Quantitative Pharmacology, Biopharmaceuticals R&D, AstraZeneca, Cambridge CB1 9JS, UK.

出版信息

Pharmaceutics. 2025 Apr 24;17(5):560. doi: 10.3390/pharmaceutics17050560.

Abstract

: Physiologically based pharmacokinetic (PBPK) modeling is an important tool in biologic drug development. However, a standardized modeling strategy is currently missing. A cross-industry collaboration developed PBPK models for seven case studies, including monoclonal antibodies, antibody-drug conjugates, and bispecific T-cell engagers, to identify key parameters and establish a workflow to simulate biologic drugs in monkeys and in humans. : PBPK models were developed in the monkey with limited data, including the molecular weight, the binding affinity to FcRn, and the additional systemic clearance of IgG, which is 20% of the total clearance. The binding affinity was only available for human FcRn and corrected for the known species-dependent differences in IgG binding. The strategy of monkey simulations was evaluated with an additional 14 studies published in the literature. Three different scenarios were simulated in humans afterwards: without, with allometrically scaled, and with optimized additional systemic clearance. : The plasma peak concentration and the area under the curve were predicted within 50% of the observed data for all studied case examples in the monkey, which demonstrates that sparse input parameters are sufficient for successful predictions in the monkey. Simulations in humans demonstrated the need for additional systemic clearance, because drug exposure was highly overpredicted without an additional systemic clearance term. Allometric scaling improved the predictions, but optimization led to the best fit, which is currently a limitation in the translation from animals to humans. : This work highlights the importance of understanding the general mechanisms of drug uptake in different tissue types and cells in both target-dependent and -independent processes.

摘要

基于生理的药代动力学(PBPK)建模是生物药物研发中的一项重要工具。然而,目前缺少标准化的建模策略。一个跨行业合作项目针对七个案例研究开发了PBPK模型,包括单克隆抗体、抗体药物偶联物和双特异性T细胞衔接器,以确定关键参数并建立在猴子和人类中模拟生物药物的工作流程。

在猴子中利用有限的数据开发了PBPK模型,这些数据包括分子量、对FcRn的结合亲和力以及IgG的额外全身清除率,后者占总清除率的20%。结合亲和力仅适用于人类FcRn,并针对已知的IgG结合中物种依赖性差异进行了校正。随后用文献中发表的另外14项研究评估了猴子模拟策略。之后在人类中模拟了三种不同的情况:无、按体表面积缩放以及优化额外全身清除率。

在猴子中,所有研究案例的血浆峰浓度和曲线下面积预测值在观察数据的50%以内,这表明稀疏的输入参数足以在猴子中成功预测。在人类中的模拟表明需要额外的全身清除率,因为在没有额外全身清除率项的情况下,药物暴露被高度高估。按体表面积缩放改善了预测,但优化导致了最佳拟合,这目前是从动物到人类转化中的一个限制。

这项工作强调了在靶点依赖性和非依赖性过程中理解药物在不同组织类型和细胞中摄取的一般机制的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d986/12115253/9fa133734e03/pharmaceutics-17-00560-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验