Weng Yuhan, Sun Zhaoyun, Liu Huiying, Gu Yingbin
School of Information Engineering, Chang'an University, Xi'an 710064, China.
Sensors (Basel). 2025 May 9;25(10):2986. doi: 10.3390/s25102986.
The skid resistance of asphalt pavement is vital for traffic safety and reducing accidents. Existing research using only wavelet transforms or fractal theory to study the pavement surface texture-skid resistance relationship has limitations. This paper integrates a wavelet transform and fractal theory to extract the multi-scale fractal features of pavement texture. It proposes an interpretable machine learning model for skid resistance assessments of sand-accumulated pavements. The three-dimensional (3D) texture of asphalt pavements is decomposed at multiple scales, and fractal and multifractal features are extracted to build a dataset. The performance of mainstream machine learning models is compared, and the eXtreme Gradient Boosting (XGBoost) model is optimized using the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm. The SHapley Additive exPlanations (SHAP) method is used to analyze the optimal model's interpretability. The results show that asphalt concrete with a maximum nominal particle size of 13 mm (AC-13) has the most concentrated fractal dimension, followed by open-graded friction course with a maximum nominal particle size of 9.5 mm (OGFC-10), with stone matrix asphalt with a maximum nominal particle size of 16 mm (SMA-16) being the most dispersed. The singular intensity difference of the multifractal (Δ) changes oppositely to the fractal dimension (), and the fractal dimension difference of the multifractal (Δ) decreases with the number of wavelet decomposition layers. The CMA-ES-XGBoost model improves R by 27.1%, 9%, and 3.4% over Linear Regression, Light Gradient Boosting Machine (LightGBM), and XGBoost, respectively. The 0.4-0.8 mm range fractal dimension most significantly impacts the model output, with complex interactions between features at different scales.
沥青路面的抗滑性能对交通安全和减少事故至关重要。现有的仅使用小波变换或分形理论来研究路面表面纹理与抗滑性能关系的研究存在局限性。本文将小波变换和分形理论相结合,以提取路面纹理的多尺度分形特征。提出了一种用于堆积砂路面抗滑性能评估的可解释机器学习模型。对沥青路面的三维(3D)纹理进行多尺度分解,提取分形和多重分形特征以构建数据集。比较了主流机器学习模型的性能,并使用协方差矩阵自适应进化策略(CMA-ES)算法对极端梯度提升(XGBoost)模型进行了优化。使用SHapley加法解释(SHAP)方法分析最优模型的可解释性。结果表明,最大公称粒径为13mm的沥青混凝土(AC-13)的分形维数最集中,其次是最大公称粒径为9.5mm的开级配摩擦层(OGFC-10),最大公称粒径为16mm的沥青马蹄脂碎石混合料(SMA-16)最分散。多重分形的奇异强度差(Δ)与分形维数()变化相反,多重分形的分形维数差(Δ)随小波分解层数的增加而减小。CMA-ES-XGBoost模型相对于线性回归、轻梯度提升机(LightGBM)和XGBoost分别将R提高了27.1%、9%和3.4%。0.4 - 0.8mm范围内的分形维数对模型输出影响最显著,不同尺度特征之间存在复杂的相互作用。