Suppr超能文献

基于三维图像技术的路面磨损分析纹理指标研究。

Study of Texture Indicators Applied to Pavement Wear Analysis Based on 3D Image Technology.

机构信息

School of Civil Engineering, Chongqing University, Chongqing 400045, China.

Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China.

出版信息

Sensors (Basel). 2022 Jun 30;22(13):4955. doi: 10.3390/s22134955.

Abstract

Pavement texture characteristics can reflect early performance decay, skid resistance, and other information. However, most statistical texture indicators cannot express this difference. This study adopts 3D image camera equipment to collect texture data from laboratory asphalt mixture specimens and actual pavement. A pre-processing method was carried out, including data standardisation, slope correction, missing value and outlier processing, and envelope processing. Then the texture data were calculated based on texture separation, texture power spectrum, grey level co-occurrence matrix, and fractal theory to acquire six leading texture indicators and eight extended indicators. The Pearson correlation coefficient was used to analyse the correlation of different texture indicators. The distinction vector based on the information entropy is calculated to analyse the distinction of the indicators. High correlations between (energy) and (entropy), and (Minkowski dimension) were found. The (contrast) has low correlations with (macro-texture power spectrum area), and . However, the differentiation of and is more prominent, and the differentiation of the is smaller. , , and indicators based on macro-texture and the corresponding original texture have strong linear correlations. However, the microtexture indicators are not linearly correlated with the corresponding original texture indicators. , (micro-texture power spectrum area) and exhibit high degrees of numerical concentration for the same road sections and may be more statistically helpful in distinguishing the characteristics of the pavement performance decay of the road sections.

摘要

路面纹理特征可以反映早期性能衰减、抗滑性能等信息。然而,大多数统计纹理指标无法表达这种差异。本研究采用 3D 图像摄像机设备从实验室沥青混合料试件和实际路面采集纹理数据。进行了预处理,包括数据标准化、坡度校正、缺失值和异常值处理以及包络处理。然后,基于纹理分离、纹理功率谱、灰度共生矩阵和分形理论计算纹理数据,获取六个主要纹理指标和八个扩展指标。采用皮尔逊相关系数分析不同纹理指标的相关性。计算基于信息熵的区分向量,分析指标的区分度。发现 (能量)和 (熵)、 与 (Minkowski 维数)之间存在高度相关性。 (对比度)与 (宏观纹理功率谱面积)和 之间的相关性较低。然而, 和 的区别更为明显, 的区别较小。基于宏观纹理的 、 、 和 指标与相应的原始纹理具有很强的线性相关性。然而,微观纹理指标与相应的原始纹理指标没有线性相关性。 、 (微观纹理功率谱面积)和 在相同路段表现出高度的数值集中,可能在区分路段路面性能衰减特征方面更具统计学意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a13b/9269722/bde0635af5eb/sensors-22-04955-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验