Suppr超能文献

基于超声和多尺度特征提取的土壤孔隙度检测方法

Soil Porosity Detection Method Based on Ultrasound and Multi-Scale Feature Extraction.

作者信息

Xing Hang, Zhong Zeyang, Zhang Wenhao, Jiang Yu, Jiang Xinyu, Yang Xiuli, Cai Weizi, Wu Shuanglong, Qi Long

机构信息

College of Engineering, South China Agricultural University, Guangzhou 510642, China.

Information Network Center, South China Agricultural University, Guangzhou 510642, China.

出版信息

Sensors (Basel). 2025 May 20;25(10):3223. doi: 10.3390/s25103223.

Abstract

Soil porosity, as an essential indicator for assessing soil quality, plays a key role in guiding agricultural production, so it is beneficial to detect soil porosity. However, the currently available methods do not apply to high-precision and rapid detection of soil with a black-box nature in the field, so this paper proposes a soil porosity detection method based on ultrasound and multi-scale CNN-LSTM. Firstly, a series of ring cutter soil samples with different porosities were prepared manually to simulate soil collected in the field using a ring cutter, followed by ultrasonic signal acquisition of the soil samples. The acquired signals were subjected to three kinds of data augmentation processes to enrich the dataset: adding Gaussian white noise, time shift transformation, and random perturbation. Since the collected ultrasonic signals belong to long-time series data and there are different frequency and sequence features, this study constructs a multi-scale CNN-LSTM deep neural network model using large convolution kernels based on the idea of multi-scale feature extraction, which uses multiple large convolution kernels of different sizes to downsize the collected ultra-long time series data and extract local features in the sequences, and combining the ability of LSTM to capture global and long-term dependent features enhances the feature expression ability of the model. The multi-head self-attention mechanism is added at the end of the model to infer the before-and-after relationship of the sequence data to improve the degradation of the model performance caused by waveform distortion. Finally, the model was trained, validated, and tested using ultrasonic signal data collected from soil samples to demonstrate the accuracy of the detection method. The model has a coefficient of determination of 0.9990 for detecting soil porosity, with a percentage root mean square error of only 0.66%. It outperforms other advanced comparative models, making it very promising for application.

摘要

土壤孔隙度作为评估土壤质量的重要指标,在指导农业生产中起着关键作用,因此检测土壤孔隙度具有重要意义。然而,目前可用的方法不适用于现场对具有黑箱性质的土壤进行高精度快速检测,因此本文提出了一种基于超声和多尺度CNN-LSTM的土壤孔隙度检测方法。首先,人工制备了一系列不同孔隙度的环刀土样,以模拟使用环刀在田间采集的土壤,随后对土样进行超声信号采集。对采集到的信号进行三种数据增强处理以丰富数据集:添加高斯白噪声、时移变换和随机扰动。由于采集到的超声信号属于长时间序列数据且存在不同的频率和序列特征,本研究基于多尺度特征提取的思想,使用大卷积核构建了一个多尺度CNN-LSTM深度神经网络模型,该模型使用多个不同大小的大卷积核对采集到的超长时序列数据进行降维,并提取序列中的局部特征,同时结合LSTM捕捉全局和长期依赖特征的能力,增强了模型的特征表达能力。在模型末尾添加多头自注意力机制以推断序列数据的前后关系,改善因波形失真导致的模型性能退化。最后,使用从土样采集的超声信号数据对模型进行训练、验证和测试,以证明该检测方法的准确性。该模型检测土壤孔隙度的决定系数为0.9990,百分比均方根误差仅为0.66%。它优于其他先进的对比模型,具有非常广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1828/12115453/5963bfa95c0a/sensors-25-03223-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验