Suppr超能文献

爱丁堡视觉步态评分(EVGS)的自动化实施

Automated Implementation of the Edinburgh Visual Gait Score (EVGS).

作者信息

Somasundaram Ishaasamyuktha, Tu Albert, Olleac Ramiro, Baddour Natalie, Lemaire Edward D

机构信息

Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Department of Surgery, Division of Neurosurgery, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada.

出版信息

Sensors (Basel). 2025 May 21;25(10):3226. doi: 10.3390/s25103226.

Abstract

The Edinburgh Visual Gait Score (EVGS) is a commonly used clinical scale for assessing gait abnormalities, providing insight into diagnosis and treatment planning. However, its manual implementation is resource-intensive and requires time, expertise, and a controlled environment for video recording and analysis. To address these issues, an automated approach for scoring the EVGS was developed. Unlike past methods dependent on controlled environments or simulated videos, the proposed approach integrates pose estimation with new algorithms to handle operational challenges present in the dataset, such as minor camera movement during sagittal recordings, slight zoom variations in coronal views, and partial visibility (e.g., missing head) in some videos. The system uses OpenPose for pose estimation and new algorithms for automatic gait event detection, stride segmentation, and computation of the 17 EVGS parameters across the sagittal and coronal planes. Evaluation of gait videos of patients with cerebral palsy showed high accuracy for parameters such as hip and knee flexion but a need for improvement in pelvic rotation and hindfoot alignment scoring. This automated EVGS approach can minimize the workload for clinicians through the introduction of automated, rapid gait analysis and enable mobile-based applications for clinical decision-making.

摘要

爱丁堡视觉步态评分(EVGS)是一种常用的临床量表,用于评估步态异常,为诊断和治疗计划提供依据。然而,其人工实施资源密集,需要时间、专业知识以及用于视频录制和分析的受控环境。为解决这些问题,开发了一种对EVGS进行评分的自动化方法。与过去依赖受控环境或模拟视频的方法不同,该方法将姿态估计与新算法相结合,以应对数据集中存在的操作挑战,如矢状面记录期间的轻微相机移动、冠状面视图中的轻微变焦变化以及某些视频中的部分可见性(如头部缺失)。该系统使用OpenPose进行姿态估计,并使用新算法进行自动步态事件检测、步幅分割以及计算矢状面和冠状面上的17个EVGS参数。对脑瘫患者步态视频的评估显示,髋部和膝部屈曲等参数的准确性较高,但骨盆旋转和后足对线评分仍需改进。这种自动化的EVGS方法可以通过引入自动化、快速的步态分析来最小化临床医生的工作量,并实现基于移动设备的临床决策应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验