Suppr超能文献

姿势估计在人类全生命周期健康和表现中的应用。

Applications of Pose Estimation in Human Health and Performance across the Lifespan.

机构信息

Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD 21205, USA.

Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

出版信息

Sensors (Basel). 2021 Nov 3;21(21):7315. doi: 10.3390/s21217315.

Abstract

The emergence of pose estimation algorithms represents a potential paradigm shift in the study and assessment of human movement. Human pose estimation algorithms leverage advances in computer vision to track human movement automatically from simple videos recorded using common household devices with relatively low-cost cameras (e.g., smartphones, tablets, laptop computers). In our view, these technologies offer clear and exciting potential to make measurement of human movement substantially more accessible; for example, a clinician could perform a quantitative motor assessment directly in a patient's home, a researcher without access to expensive motion capture equipment could analyze movement kinematics using a smartphone video, and a coach could evaluate player performance with video recordings directly from the field. In this review, we combine expertise and perspectives from physical therapy, speech-language pathology, movement science, and engineering to provide insight into applications of pose estimation in human health and performance. We focus specifically on applications in areas of human development, performance optimization, injury prevention, and motor assessment of persons with neurologic damage or disease. We review relevant literature, share interdisciplinary viewpoints on future applications of these technologies to improve human health and performance, and discuss perceived limitations.

摘要

姿态估计算法的出现代表了人类运动研究和评估领域的潜在范式转变。姿态估计算法利用计算机视觉的进步,从使用普通家用设备(例如智能手机、平板电脑、笔记本电脑)相对低成本的相机录制的简单视频中自动跟踪人类运动。在我们看来,这些技术为实现人类运动的更广泛测量提供了明确而令人兴奋的潜力;例如,临床医生可以直接在患者家中进行定量运动评估,没有昂贵运动捕捉设备的研究人员可以使用智能手机视频分析运动运动学,教练可以直接从现场的视频记录中评估球员表现。在这篇综述中,我们结合了物理治疗、言语语言病理学、运动科学和工程学的专业知识和观点,深入了解姿态估计在人类健康和表现中的应用。我们特别关注在人类发展、性能优化、损伤预防以及神经损伤或疾病患者的运动评估等领域的应用。我们回顾了相关文献,分享了对这些技术在改善人类健康和表现方面未来应用的跨学科观点,并讨论了感知到的局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/260f/8588262/dab6a404a9aa/sensors-21-07315-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验