Suppr超能文献

基于熔融3D打印的生物相容性聚左旋乳酸中可定制的压电链形态

Tailorable Piezoelectric Chain Morphology in Biocompatible Poly‑l‑lactide Induced by Melt-Based 3D Printing.

作者信息

Pascual-González Cristina, Pacheco-Carpio Gustavo, Fernández-Blázquez Juan P, Serrano María Concepción, Wicklein Bernd, Algueró Miguel, Amorín Harvey

机构信息

Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, C/Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain.

IMDEA Materials Institute, C/Eric Kandel 2, Getafe, 28906 Madrid, Spain.

出版信息

ACS Appl Polym Mater. 2025 May 6;7(10):6067-6081. doi: 10.1021/acsapm.5c00450. eCollection 2025 May 23.

Abstract

Biobased and biodegradable poly-l-lactide (PLLA) stands out among piezoelectric polymers for its biocompatibility and environmental sustainability. Its piezoelectric response is closely related to the crystallinity and the alignment of polymer chains, which is conventionally obtained by drawing techniques. These are two-step processes with tight shape constraints, and the material technology implementation would strongly benefit from the demonstration of a single-step process capable of directly achieving tailored piezoelectric morphology in PLLA biopolymer from polymer melt. Fused deposition modeling (FDM) three-dimensional (3D) printing can play this role, directly achieving tailored piezoelectric morphology in PLLA biopolymer by the microscale control of molecular chain orientation through preparation parameters, such as 3D printing speed or bed temperature. The printing-crystal phase content and texture-piezoelectric property relationships are comprehensively presented, and the key 3D printing parameters to obtain optimized piezoelectric chain morphologies are defined. Results reveal melt-based 3D printing to be a suitable technique for manufacturing biocompatible PLLA piezoelectric platforms that are also biodegradable. A commercial PLLA (molecular weight of 160 kDa) has been used, with which a large shear piezoelectric coefficient ( = 8.5 pC/N) was attained after optimized printing. Biocompatibility with murine L929 fibroblasts is confirmed for this specific material, opening its use not only for smart monitoring but also for biomedical applications, including tissue engineering.

摘要

生物基可生物降解的聚左旋乳酸(PLLA)在压电聚合物中脱颖而出,因其具有生物相容性和环境可持续性。其压电响应与聚合物链的结晶度和取向密切相关,传统上是通过拉伸技术获得的。这些是具有严格形状限制的两步法工艺,而材料技术的实施将从能够直接从聚合物熔体中在PLLA生物聚合物中实现定制压电形态的单步法演示中受益匪浅。熔融沉积建模(FDM)三维(3D)打印可以发挥这一作用,通过诸如3D打印速度或床温等制备参数对分子链取向进行微观控制,直接在PLLA生物聚合物中实现定制的压电形态。全面介绍了打印晶体相含量与织构-压电性能的关系,并确定了获得优化压电链形态的关键3D打印参数。结果表明,基于熔体的3D打印是制造具有生物相容性且可生物降解的PLLA压电平台的合适技术。使用了一种商业PLLA(分子量为160 kDa),经过优化打印后,其剪切压电系数较大(= 8.5 pC/N)。证实了这种特定材料与小鼠L929成纤维细胞具有生物相容性,这不仅为智能监测,也为包括组织工程在内的生物医学应用开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c69e/12107498/ab6af389b06f/ap5c00450_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验