Suppr超能文献

通过使用固定化钒酞菁还原氧来实现可扩展的过氧化氢生产。

Scalable HO Production via O Reduction Using Immobilized Vanadyl Phthalocyanine.

作者信息

Yang Haozhou, Guo Na, Xi Shibo, Yin Jiaxi, Song Tao, Xiao Yukun, Duan Lele, Zhang Chun, Wang Lei

机构信息

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, Singapore.

Department of Physics, National University of Singapore, Science Drive 4, Singapore, Singapore.

出版信息

Angew Chem Int Ed Engl. 2025 Aug 4;64(32):e202509079. doi: 10.1002/anie.202509079. Epub 2025 Jun 3.

Abstract

The production of hydrogen peroxide (HO) via the two-electron oxygen reduction reaction (ORR) has emerged as a promising alternative to the conventional anthraquinone process. However, achieving selective HO production at practically relevant current densities (i.e., ampere-level) remains challenging due to significant selectivity deterioration at high rates. In this study, we develop a composite catalyst by immobilizing vanadyl phthalocyanine (VOPc) on carbon nanotube (CNT) substrates and evaluate its performance under conditions relevant to practical ORR electrolysis. Encouragingly, the VOPc/CNT catalyst composite achieves a high ORR current density of up to 3.5 A cm with over 90% selectivity toward HO in acidic media. Through various in situ characterizations and theoretical calculations, we reveal that the structural integrity of the vanadium catalytic center in VOPc plays a pivotal role in stabilizing *OOH adsorption and impeding O─O cleavage under high cathodic potentials, which is critical for achieving high H₂O₂ selectivity at elevated current densities.

摘要

通过双电子氧还原反应(ORR)生产过氧化氢(HO)已成为传统蒽醌法的一种有前景的替代方法。然而,由于在高电流密度下选择性显著下降,在实际相关电流密度(即安培级)下实现选择性HO生产仍然具有挑战性。在本研究中,我们通过将钒酞菁(VOPc)固定在碳纳米管(CNT)基底上开发了一种复合催化剂,并在与实际ORR电解相关的条件下评估其性能。令人鼓舞的是,VOPc/CNT催化剂复合材料在酸性介质中实现了高达3.5 A cm的高ORR电流密度,对HO的选择性超过90%。通过各种原位表征和理论计算,我们揭示了VOPc中钒催化中心的结构完整性在高阴极电位下稳定*OOH吸附和阻碍O─O裂解方面起着关键作用,这对于在升高的电流密度下实现高过氧化氢选择性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a20/12322638/cd37c40e1f65/ANIE-64-e202509079-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验