Kim Seo Hyun, Kim Jeong-Hyun, Park Bogeun, Jang Hanhwi, Lee Jeong-Gyu, Yim Soonmin, Jeong Jae Won, Koo Seyoung, Jung Yeon Sik, Kim Byung-Hyun, Choi Min-Jae, Han Hyeuk Jin
Department of Materials Science and Engineering, Sungshin Women's University, Seoul, 01133, South Korea.
Department of Department of Advanced Battery Convergence Engineering, Dongguk University, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
Adv Mater. 2025 Aug;37(34):e2500250. doi: 10.1002/adma.202500250. Epub 2025 May 28.
Transition metal phosphides (TMPs) stand out for their excellent catalytic activity, driven by metal‒phosphorus bonding that promotes electron donation, which makes them ideal for electrocatalysis applications. However, the synthesis of single-crystal TMP, which is essential for elucidating intrinsic properties, remains challenging owing to the lack of efficient methods, low yields, and lengthy processes. This study presents the synthesis of facet-controlled molybdenum phosphide (MoP) single crystals using a liquid-metal-assisted chemical vapor deposition method. By adjusting the synthesis temperature, two distinct MoP morphologies are created: nanoplates dominated by (0001) facets and pillars dominated by facets. Electrochemical evaluation reveals that the MoP pillars outperform nanoplates in the two-electron oxygen reduction reaction, achieving over 92% selectivity for HO production and significantly higher kinetic current density. Long-term stability tests confirm that the MoP pillars maintain a high Faradaic efficiency (>90%) and stable electrosynthesis over 80 h of continuous operation, highlighting their robustness. Density functional theory calculations reveal that the facets of the pillars enhance catalytic activity by reducing the OOH adsorption strength, thereby lowering the overpotential. This study underscores the importance of facet engineering in optimizing catalytic performance and provides a pathway for designing advanced TMP-based materials for energy and environmental applications.
过渡金属磷化物(TMPs)因其优异的催化活性而脱颖而出,这种活性由促进电子给予的金属 - 磷键驱动,这使其成为电催化应用的理想选择。然而,由于缺乏有效方法、产率低和过程冗长,对于阐明本征性质至关重要的单晶TMP的合成仍然具有挑战性。本研究提出了一种使用液态金属辅助化学气相沉积法合成面控磷化钼(MoP)单晶的方法。通过调节合成温度,创造了两种不同的MoP形态:以(0001)面为主的纳米片和以 面为主的柱状物。电化学评估表明,在两电子氧还原反应中,MoP柱状物的性能优于纳米片,对HO生成的选择性超过92%,并且动力学电流密度显著更高。长期稳定性测试证实,MoP柱状物在连续运行80小时以上的时间内保持了较高的法拉第效率(>90%)和稳定的电合成性能,突出了它们的稳健性。密度泛函理论计算表明,柱状物的 面通过降低OOH吸附强度来提高催化活性,从而降低过电位。本研究强调了面工程在优化催化性能方面的重要性,并为设计用于能源和环境应用的先进TMP基材料提供了一条途径。