Suppr超能文献

用于可逆质子固体氧化物电池的Ruddlesden-Popper钙钛矿型LnNiO(Ln = La、Pr、Nd)空气电极中氧空位的调控机制

The Regulation Mechanism of Oxygen Vacancies in Ruddlesden-Popper Perovskite LnNiO (Ln = La, Pr, Nd) Air Electrode for Reversible Protonic Solid Oxide Cells.

作者信息

Kang Kai, Liu Xu, Wang Chao, Yang Lan, Liu Yihui

机构信息

Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan, Hubei, 430070, China.

Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan, 430070, China.

出版信息

Small. 2025 Jul;21(30):e2502478. doi: 10.1002/smll.202502478. Epub 2025 May 28.

Abstract

Reversible protonic solid oxide cells (R-PSOCs) are promising green energy storage devices for efficient hydrogen/electricity conversion. Due to the complex environment of the air electrode, the microscopic influence mechanism of oxygen vacancies in perovskites on oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is unclear. In this study, the layered Ruddlesden-Popper perovskite LnNiO (Ln = La, Pr, Nd) air electrodes are constructed to investigate the effect of oxygen vacancies on the water/oxygen coupling in dual mode. The PrNiO full cell exhibits the highest peak power density of 0.692 W cm in fuel cell mode and a maximum current density of -1.2 A cm in electrolysis cell mode at 700 °C. The changes in electrochemical impedance spectroscopy show that PrNiO can absorb a small amount of interfacial water in SOFC mode to promote triple-conductivity. Meanwhile, it can have good electrolytic performance in an atmosphere of 10% HO in the SOEC mode. The enriched oxygen vacancies of Pr₂NiO can provide a broad platform for both the ORR and OER, while the appropriate hydrophilicity can achieve a better balance state by the competitive adsorption of water/oxygen. These comprehensive characteristics make PrNiO suitable to be a potential Ruddlesden-Popper perovskite air electrode material for RSOCs.

摘要

可逆质子固体氧化物电池(R-PSOCs)是用于高效氢/电转换的很有前景的绿色储能装置。由于空气电极的环境复杂,钙钛矿中氧空位对氧还原反应(ORR)和析氧反应(OER)的微观影响机制尚不清楚。在本研究中,构建了层状Ruddlesden-Popper钙钛矿LnNiO(Ln = La、Pr、Nd)空气电极,以研究氧空位对双模式下水/氧耦合的影响。PrNiO全电池在700°C时,在燃料电池模式下表现出最高峰值功率密度为0.692 W cm ,在电解池模式下表现出最大电流密度为-1.2 A cm 。电化学阻抗谱的变化表明,PrNiO在固体氧化物燃料电池(SOFC)模式下可以吸收少量界面水以促进三导电率。同时,在固体氧化物电解池(SOEC)模式下,在10% H₂O气氛中它可以具有良好的电解性能。Pr₂NiO中富集的氧空位可以为ORR和OER提供一个广阔的平台,而适当的亲水性可以通过水/氧的竞争吸附实现更好的平衡状态。这些综合特性使PrNiO适合作为RSOCs潜在的Ruddlesden-Popper钙钛矿空气电极材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验