Lee Dong-Gu, Song Gookho, Lee Chunghyung, Lee Chanseok, Jang Mooseok
Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
Sci Adv. 2025 May 30;11(22):eadv2376. doi: 10.1126/sciadv.adv2376. Epub 2025 May 28.
Conventionally, optical spectrometers rely on traditional dispersive elements like grating and prism, which pose inherent challenges for miniaturizing spectrometers, including the trade-off between propagation distance and spectral resolution and calibration ambiguity. Here, we present a random dispersive element-double-layer disordered metasurfaces-where wavelength-specific speckle patterns can be uniquely determined a priori without ambiguity in wavelength and propagation distance. By directly mounting this element on an image sensor, we implement a spectrometer with a spectral resolution of around 1 nanometer and an operable range of 440 to 660 nanometers, comprising 221 spectral channels, within a form-factor of less than 1 centimeter. Our results firmly establish that the versatility of multilayer disordered metasurfaces in the spatio-spectral domain can be fully exploited for on-sensor spectroscopic applications.
传统上,光学光谱仪依赖于诸如光栅和棱镜之类的传统色散元件,这些元件在光谱仪小型化方面存在固有挑战,包括传播距离与光谱分辨率之间的权衡以及校准模糊性。在此,我们展示了一种随机色散元件——双层无序超表面——在其中可以先验地唯一确定特定波长的散斑图案,且在波长和传播距离方面不存在模糊性。通过将此元件直接安装在图像传感器上,我们实现了一种光谱仪,其光谱分辨率约为1纳米,可操作范围为440至660纳米,包含221个光谱通道,外形尺寸小于1厘米。我们的结果有力地证明,多层无序超表面在空间光谱域的多功能性可被充分用于传感器上的光谱应用。