文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

支气管镜检查中的人工智能:一项系统评价

Artificial intelligence in bronchoscopy: a systematic review.

作者信息

Cold Kristoffer Mazanti, Vamadevan Anishan, Laursen Christian B, Bjerrum Flemming, Singh Suveer, Konge Lars

机构信息

Copenhagen Academy for Medical Education and Simulation (CAMES), Center for HR & Education, The Capital Region of Denmark, Copenhagen, Denmark

Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

Eur Respir Rev. 2025 May 28;34(176). doi: 10.1183/16000617.0274-2024. Print 2025 Apr.


DOI:10.1183/16000617.0274-2024
PMID:40436614
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12117383/
Abstract

BACKGROUND: Artificial intelligence (AI) systems have been implemented to improve the diagnostic yield and operators' skills within endoscopy. Similar AI systems are now emerging in bronchoscopy. Our objective was to identify and describe AI systems in bronchoscopy. METHODS: A systematic review was performed using MEDLINE, Embase and Scopus databases, focusing on two terms: bronchoscopy and AI. All studies had to evaluate their AI against human ratings. The methodological quality of each study was assessed using the Medical Education Research Study Quality Instrument (MERSQI). RESULTS: 1196 studies were identified, with 20 passing the eligibility criteria. The studies could be divided into three categories: nine studies in airway anatomy and navigation, seven studies in computer-aided detection and classification of nodules in endobronchial ultrasound, and four studies in rapid on-site evaluation. 16 were assessment studies, with 12 showing equal performance and four showing superior performance of AI compared with human ratings. Four studies within airway anatomy implemented their AI, all favouring AI guidance to no AI guidance. The methodological quality of the studies was moderate (mean MERSQI 12.9 points, out of a maximum 18 points). INTERPRETATION: 20 studies developed AI systems, with only four examining the implementation of their AI. The four studies were all within airway navigation and favoured AI to no AI in a simulated setting. Future implementation studies are warranted to test for the clinical effect of AI systems within bronchoscopy.

摘要

背景:人工智能(AI)系统已被应用于提高内镜检查的诊断率和操作人员的技能。类似的人工智能系统目前也正在支气管镜检查中出现。我们的目的是识别和描述支气管镜检查中的人工智能系统。 方法:使用MEDLINE、Embase和Scopus数据库进行系统评价,重点关注两个术语:支气管镜检查和人工智能。所有研究都必须将其人工智能与人类评级进行比较评估。使用医学教育研究质量工具(MERSQI)评估每项研究的方法学质量。 结果:共识别出1196项研究,其中20项通过了纳入标准。这些研究可分为三类:9项关于气道解剖和导航的研究,7项关于支气管内超声中结节的计算机辅助检测和分类的研究,以及4项关于快速现场评估的研究。16项为评估研究,其中12项显示人工智能与人类评级表现相当,4项显示人工智能表现优于人类评级。气道解剖领域的4项研究应用了其人工智能,均支持人工智能引导而非无人工智能引导。这些研究的方法学质量中等(平均MERSQI为12.9分,满分18分)。 解读:20项研究开发了人工智能系统,只有4项研究考察了其人工智能的应用情况。这4项研究均属于气道导航领域,且在模拟环境中支持人工智能引导而非无人工智能引导。未来有必要开展应用研究,以测试人工智能系统在支气管镜检查中的临床效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dd5/12117383/77863b33e472/ERR-0274-2024.01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dd5/12117383/77863b33e472/ERR-0274-2024.01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dd5/12117383/77863b33e472/ERR-0274-2024.01.jpg

相似文献

[1]
Artificial intelligence in bronchoscopy: a systematic review.

Eur Respir Rev. 2025-5-28

[2]
Comparative diagnostic performance and safety of radial endobronchial ultrasound versus its combination with electromagnetic or virtual bronchoscopic navigation for peripheral pulmonary lesions: a retrospective study.

Ther Adv Respir Dis. 2025

[3]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[4]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[5]
AI-based Hepatic Steatosis Detection and Integrated Hepatic Assessment from Cardiac CT Attenuation Scans Enhances All-cause Mortality Risk Stratification: A Multi-center Study.

medRxiv. 2025-6-11

[6]
Artificial intelligence for detecting keratoconus.

Cochrane Database Syst Rev. 2023-11-15

[7]
The measurement of collaboration within healthcare settings: a systematic review of measurement properties of instruments.

JBI Database System Rev Implement Rep. 2016-4

[8]
Artificial Intelligence user interface preferences in radiology: A scoping review.

J Med Imaging Radiat Sci. 2025-5

[9]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[10]
Factors that influence participation in physical activity for people with bipolar disorder: a synthesis of qualitative evidence.

Cochrane Database Syst Rev. 2024-6-4

本文引用的文献

[1]
Artificial intelligence improves bronchoscopy performance: a randomised crossover trial.

ERJ Open Res. 2025-1-20

[2]
Artificial intelligence for automatic and objective assessment of competencies in flexible bronchoscopy.

J Thorac Dis. 2024-9-30

[3]
Mastery Learning Guided by Artificial Intelligence Is Superior to Directed Self-Regulated Learning in Flexible Bronchoscopy Training: An RCT.

Respiration. 2025

[4]
Computer-aided diagnosis for the resect-and-discard strategy for colorectal polyps: a systematic review and meta-analysis.

Lancet Gastroenterol Hepatol. 2024-11

[5]
Diagnostic performance of rapid on-site evaluation during bronchoscopy for lung cancer: A comprehensive meta-analysis.

Cancer Cytopathol. 2025-1

[6]
Automatic Segmentation of Mediastinal Lymph Nodes and Blood Vessels in Endobronchial Ultrasound (EBUS) Images Using Deep Learning.

J Imaging. 2024-8-6

[7]
Computer-aided quality assessment of endoscopist competence during colonoscopy: a systematic review.

Gastrointest Endosc. 2024-8

[8]
The application of artificial intelligence for Rapid On-Site Evaluation during flexible bronchoscopy.

Front Oncol. 2024-3-11

[9]
Response.

Chest. 2024-2

[10]
Artificial Intelligence Feedback for Bronchoscopy Training: Old Wine in a New Bottle or True Innovation?

Chest. 2024-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索