文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于特征融合与注意力机制的深度学习用于改善超声图像中的乳腺癌诊断

Improving Breast Cancer Diagnosis in Ultrasound Images Using Deep Learning with Feature Fusion and Attention Mechanism.

作者信息

Asif Sohaib, Yan Yuqi, Feng Bojian, Wang Meiling, Zheng Yuxin, Jiang Tian, Fu Ruyi, Yao Jincao, Lv Lujiao, Song Mei, Sui Lin, Yin Zheng, Wang Vicky Yang, Xu Dong

机构信息

Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, Zhejiang 317502, China (S.A., Y.Y., B.F., L.S., D.X.); Center of Intelligent Diagnosis and Therapy (Taizhou), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Taizhou, Zhejiang 317502, China (S.A., Y.Y., B.F., L.S., V.Y.W., D.X.); Wenling Institute of Big Data and Artificial Intelligence in Medicine, Taizhou, Zhejiang 317502, China (S.A., Y.Y., B.F., L.S., V.Y.W., D.X.); Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China (S.A., Y.Y., B.F., T.J., J.Y., L.L., M.S., M.S., L.S., V.Y.W., D.X.).

Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), Taizhou, Zhejiang 317502, China (S.A., Y.Y., B.F., L.S., D.X.); Center of Intelligent Diagnosis and Therapy (Taizhou), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Taizhou, Zhejiang 317502, China (S.A., Y.Y., B.F., L.S., V.Y.W., D.X.); Wenling Institute of Big Data and Artificial Intelligence in Medicine, Taizhou, Zhejiang 317502, China (S.A., Y.Y., B.F., L.S., V.Y.W., D.X.); Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China (S.A., Y.Y., B.F., T.J., J.Y., L.L., M.S., M.S., L.S., V.Y.W., D.X.); Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, Hangzhou 310022, China (Y.Y., T.J., J.Y., L.S., D.X.).

出版信息

Acad Radiol. 2025 May 27. doi: 10.1016/j.acra.2025.05.007.


DOI:10.1016/j.acra.2025.05.007
PMID:40436710
Abstract

RATIONALE AND OBJECTIVES: Early detection of malignant lesions in ultrasound images is crucial for effective cancer diagnosis and treatment. While traditional methods rely on radiologists, deep learning models can improve accuracy, reduce errors, and enhance efficiency. This study explores the application of a deep learning model for classifying benign and malignant lesions, focusing on its performance and interpretability. MATERIALS AND METHODS: In this study, we proposed a feature fusion-based deep learning model for classifying benign and malignant lesions in ultrasound images. The model leverages advanced architectures such as MobileNetV2 and DenseNet121, enhanced with feature fusion and attention mechanisms to boost classification accuracy. The clinical dataset comprises 2171 images collected from 1758 patients between December 2020 and May 2024. Additionally, we utilized the publicly available BUSI dataset, consisting of 780 images from female patients aged 25 to 75, collected in 2018. To enhance interpretability, we applied Grad-CAM, Saliency Maps, and shapley additive explanations (SHAP) techniques to explain the model's decision-making. A comparative analysis with radiologists of varying expertise levels is also conducted. RESULTS: The proposed model exhibited the highest performance, achieving an AUC of 0.9320 on our private dataset and an area under the curve (AUC) of 0.9834 on the public dataset, significantly outperforming traditional deep convolutional neural network models. It also exceeded the diagnostic performance of radiologists, showcasing its potential as a reliable tool for medical image classification. The model's success can be attributed to its incorporation of advanced architectures, feature fusion, and attention mechanisms. The model's decision-making process was further clarified using interpretability techniques like Grad-CAM, Saliency Maps, and SHAP, offering insights into its ability to focus on relevant image features for accurate classification. CONCLUSION: The proposed deep learning model offers superior accuracy in classifying benign and malignant lesions in ultrasound images, outperforming traditional models and radiologists. Its strong performance, coupled with interpretability techniques, demonstrates its potential as a reliable and efficient tool for medical diagnostics. DATA AVAILABILITY: The datasets generated and analyzed during the current study are not publicly available due to the nature of this research and participants of this study, but may be available from the corresponding author on reasonable request.

摘要

原理与目标:超声图像中恶性病变的早期检测对于有效的癌症诊断和治疗至关重要。虽然传统方法依赖放射科医生,但深度学习模型可以提高准确性、减少误差并提高效率。本研究探讨了一种深度学习模型在良性和恶性病变分类中的应用,重点关注其性能和可解释性。 材料与方法:在本研究中,我们提出了一种基于特征融合的深度学习模型,用于对超声图像中的良性和恶性病变进行分类。该模型利用了诸如MobileNetV2和DenseNet121等先进架构,并通过特征融合和注意力机制进行增强,以提高分类准确性。临床数据集包含2020年12月至2024年5月期间从1758名患者收集的2171张图像。此外,我们使用了公开可用的BUSI数据集,该数据集由2018年收集的780张25至75岁女性患者的图像组成。为了提高可解释性,我们应用了Grad-CAM、显著性图和Shapley值加法解释(SHAP)技术来解释模型的决策过程。还对不同专业水平的放射科医生进行了对比分析。 结果:所提出的模型表现出最高的性能,在我们的私有数据集上的AUC为0.9320,在公共数据集上的曲线下面积(AUC)为0.9834,显著优于传统的深度卷积神经网络模型。它还超过了放射科医生的诊断性能,展示了其作为医学图像分类可靠工具的潜力。该模型的成功可归因于其采用了先进架构、特征融合和注意力机制。使用Grad-CAM、显著性图和SHAP等可解释性技术进一步阐明了模型的决策过程,深入了解了其专注于相关图像特征以进行准确分类的能力。 结论:所提出的深度学习模型在超声图像中良性和恶性病变的分类方面具有卓越的准确性,优于传统模型和放射科医生。其强大的性能以及可解释性技术证明了它作为医学诊断可靠且高效工具的潜力。 数据可用性:由于本研究的性质和本研究的参与者,在当前研究期间生成和分析的数据集不公开,但可根据合理请求从相应作者处获得。

相似文献

[1]
Improving Breast Cancer Diagnosis in Ultrasound Images Using Deep Learning with Feature Fusion and Attention Mechanism.

Acad Radiol. 2025-5-27

[2]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[3]
Accurate classification of benign and malignant breast tumors in ultrasound imaging with an enhanced deep learning model.

Front Bioeng Biotechnol. 2025-6-25

[4]
Deep Learning for the Early Detection of Invasive Ductal Carcinoma in Histopathological Images: Convolutional Neural Network Approach With Transfer Learning.

JMIR Form Res. 2025-8-21

[5]
Advanced skin cancer prediction with medical image data using MobileNetV2 deep learning and optimized techniques.

Sci Rep. 2025-8-7

[6]
A medical image classification method based on self-regularized adversarial learning.

Med Phys. 2024-11

[7]
Advancing breast ultrasound diagnostics through hybrid deep learning models.

Comput Biol Med. 2024-9

[8]
CXR-MultiTaskNet a unified deep learning framework for joint disease localization and classification in chest radiographs.

Sci Rep. 2025-8-31

[9]
Are Artificial Intelligence Models Listening Like Cardiologists? Bridging the Gap Between Artificial Intelligence and Clinical Reasoning in Heart-Sound Classification Using Explainable Artificial Intelligence.

Bioengineering (Basel). 2025-5-22

[10]
Enhancing Diagnostic Efficiency: A Radiomics Approach for Distinguishing Benign and Malignant Breast Lesions Using BI-RADS Features From Ultrasound Imaging.

Clin Breast Cancer. 2025-3-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索