BIT:基于表观基因组学查询区域集的转录调节因子的贝叶斯识别
BIT: Bayesian Identification of Transcriptional regulators from epigenomics-based query region sets.
作者信息
Lu Zeyu, Xu Lin, Wang Xinlei
机构信息
Department of Statistics and Data Science, Moody School of Graduate and Advanced Studies, Southern Methodist University, Dallas, TX, USA.
Department of Mathematics, University of Texas at Arlington, Arlington, TX, USA.
出版信息
Nat Commun. 2025 May 28;16(1):4966. doi: 10.1038/s41467-025-60269-4.
Transcriptional regulators (TRs) are master controllers of gene expression and play a critical role in both normal tissue development and disease progression. However, existing computational methods for identification of TRs regulating specific biological processes have significant limitations, such as relying on distance on a linear chromosome or binding motifs that have low specificity. Many also use statistical tests in ways that lack interpretability and rigorous confidence measures. We introduce BIT, a Bayesian hierarchical model for in-silico TR identification. Leveraging a comprehensive library of TR ChIP-seq data, BIT offers a fully integrated Bayesian approach to assess genome-wide consistency between user-provided epigenomic profiling data and the TR binding library, enabling the identification of critical TRs while quantifying uncertainty. It avoids estimation and inference in a sequential manner or numerous isolated statistical tests, thereby enhancing accuracy and interpretability. BIT successfully identifies perturbed TRs in perturbation experiments, functionally essential TRs in various cancer types, and cell-type-specific TRs within heterogeneous cell populations, offering deeper biological insights into transcriptional regulation.
转录调节因子(TRs)是基因表达的主要调控者,在正常组织发育和疾病进展中都起着关键作用。然而,现有的用于识别调控特定生物学过程的TRs的计算方法存在显著局限性,例如依赖线性染色体上的距离或特异性较低的结合基序。许多方法在使用统计检验时也缺乏可解释性和严格的置信度衡量标准。我们引入了BIT,一种用于在计算机上识别TRs的贝叶斯层次模型。利用TR ChIP-seq数据的综合文库,BIT提供了一种完全集成的贝叶斯方法,用于评估用户提供的表观基因组分析数据与TR结合文库之间的全基因组一致性,从而能够识别关键的TRs,同时量化不确定性。它避免了以顺序方式进行估计和推断或进行大量孤立的统计检验,从而提高了准确性和可解释性。BIT成功地在扰动实验中识别出受扰动的TRs、在各种癌症类型中识别出功能上至关重要的TRs,以及在异质细胞群体中识别出细胞类型特异性的TRs,为转录调控提供了更深入的生物学见解。