Suppr超能文献

一种从交通到空间表征的全球城市道路网络自适应简化工作流程。

A global urban road network self-adaptive simplification workflow from traffic to spatial representation.

作者信息

Zhao Xinzhuo, Xu Jintu, Yang Junjie, Duan Jin

机构信息

School of Architecture, Southeast University, Nanjing, China.

出版信息

Sci Data. 2025 May 28;12(1):883. doi: 10.1038/s41597-025-05164-9.

Abstract

Urban road network is crucial for understanding and revealing the spatial logic of urban organization and evolution. However, existing urban road network datasets like OpenStreetMap are designed for traffic studies, treating each lane as a distinct spatial unit of mobility, which may not align with urban studies considering each road as an integration space for social and cultural dynamics. This study established a novel workflow to self-adaptively transform the global urban road network from traffic representation to spatial representation and provides simplified urban road network data of 35 globally representative cities. Our workflow, comprising six critical stages, is anchored on the segment divergence from their surroundings to guide aggregation decisions, effectively mitigating the risks of over-aggregation and under-aggregation against the diversity of global urban backgrounds. This workflow significantly reduces the duplicated segments of roads from an average of 31.2% to 3.6% in total, performing consistently across diverse countries and continents. This dataset is expected to become a robust data layer for urban socio-economic modelling and GeoAI development.

摘要

城市道路网络对于理解和揭示城市组织与演变的空间逻辑至关重要。然而,现有的城市道路网络数据集,如OpenStreetMap,是为交通研究设计的,将每条车道视为一个独特的移动空间单元,这可能与将每条道路视为社会和文化动态整合空间的城市研究不一致。本研究建立了一种新颖的工作流程,用于将全球城市道路网络从交通表示自适应地转换为空间表示,并提供了35个全球代表性城市的简化城市道路网络数据。我们的工作流程包括六个关键阶段,以路段与其周围环境的差异为基础来指导聚合决策,有效降低了针对全球城市背景多样性的过度聚合和聚合不足的风险。该工作流程显著减少了道路重复路段,总数从平均31.2%降至3.6%,在不同国家和大陆均表现一致。该数据集有望成为城市社会经济建模和地理人工智能发展的强大数据层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe6e/12119848/3d739b4c8de3/41597_2025_5164_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验