Suppr超能文献

噪声中等规模量子计算机上的贪婪无梯度自适应变分量子算法。

Greedy gradient-free adaptive variational quantum algorithms on a noisy intermediate scale quantum computer.

作者信息

Feniou César, Hassan Muhammad, Claudon Baptiste, Courtat Axel, Adjoua Olivier, Maday Yvon, Piquemal Jean-Philip

机构信息

Sorbonne Université, Laboratoire de Chimie Théorique (UMR-7616-CNRS), 75005, Paris, France.

Qubit Pharmaceuticals, Advanced Research Department, Paris, France.

出版信息

Sci Rep. 2025 May 28;15(1):18689. doi: 10.1038/s41598-025-99962-1.

Abstract

Hybrid quantum-classical adaptive Variational Quantum Eigensolvers (VQE) hold the potential to outperform classical computing for simulating many-body quantum systems. However, practical implementations on current quantum processing units (QPUs) are challenging due to the noisy evaluation of a polynomially scaling number of observables, undertaken for operator selection and high-dimensional cost function optimization. We introduce an adaptive algorithm using analytic, gradient-free optimization, called Greedy Gradient-free Adaptive VQE (GGA-VQE). In addition to demonstrating the algorithm's improved resilience to statistical sampling noise in the computation of simple molecular ground states, we execute GGA-VQE on a 25-qubit error-mitigated QPU by computing the ground state of a 25-body Ising model. Although hardware noise on the QPU produces inaccurate energies, our implementation outputs a parameterized quantum circuit yielding a favorable ground-state approximation. We demonstrate this by retrieving the parameterized operators calculated on the QPU and evaluating the resulting ansatz wave-function via noiseless emulation (i.e., hybrid observable measurement).

摘要

混合量子-经典自适应变分量子本征求解器(VQE)在模拟多体量子系统方面有超越经典计算的潜力。然而,由于对可观测量进行多项式规模数量的噪声评估(用于算符选择和高维成本函数优化),当前量子处理单元(QPU)上的实际实现具有挑战性。我们引入了一种使用解析、无梯度优化的自适应算法,称为贪婪无梯度自适应VQE(GGA-VQE)。除了展示该算法在计算简单分子基态时对统计采样噪声的改进弹性外,我们还通过计算25体伊辛模型的基态,在一个25量子比特的误差缓解QPU上执行GGA-VQE。尽管QPU上的硬件噪声会产生不准确的能量,但我们的实现输出了一个参数化量子电路,产生了良好的基态近似。我们通过检索在QPU上计算的参数化算符,并通过无噪声仿真(即混合可观测量测量)评估所得的近似波函数来证明这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4397/12120033/1b51aaff2784/41598_2025_99962_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验