Cherukuri Suresh Babu, Ramakrishnan Sabitha
Department of Instrumentation Engineering, Madras Institute of Technology Campus, Anna University, Chennai, India.
Phys Eng Sci Med. 2025 May 28. doi: 10.1007/s13246-025-01569-3.
Electroencephalogram (EEG) acquisition systems are used to record the neural condition of humans for diagnosing various neural problems. The eye-blink or Electrooculogram (EOG) artifact caused by eye-lid movements, influences the EEG signal measurements and interferes with the diagnosis. The complete removal of eye-blink artifact while preserving the EEG content is a challenging task that needs highly efficient denoising methods, particularly from Single-Channel EEG which is widely used for Out-Of-Hospital (OOH) neurological patients and for Brain-Computer-Interface (BCI) applications. When compared to multi-channel EEG systems, Single-channel EEG system suffers certain difficulties such as lack of spatial information, redundancy, etc. This paper proposes an innovative hybrid method combining K-Means clustering and Savitzky Golay-Singular Spectrum Analysis (SG-SSA) methods for effective eye-blink artifact removal from single channel EEG. The eye-blink artifact is extracted and then subtracted from the noisy EEG signal, so that the EEG content available in the eye-blink periods are preserved. Through extensive experiments with synthetic as well as real time EEG, we show that our proposed method outperforms the other contemporary methods from literature. Our proposed hybrid approach achieves a significant reduction in Mean Absolute Error (MAE) and Relative Root Mean Square Error (RRMSE) than the Fourier-Bessel Series Expansion based Empirical Wavelet Transform (FBSE-EWT), SSA combined with independent component analysis (SSA-ICA) and Ensemble Empirical Mode Decomposition combined with ICA (EEMD-ICA), proposed in recent literature.
脑电图(EEG)采集系统用于记录人类的神经状况,以诊断各种神经问题。由眼睑运动引起的眨眼或眼电图(EOG)伪迹会影响EEG信号测量,并干扰诊断。在保留EEG内容的同时完全去除眨眼伪迹是一项具有挑战性的任务,需要高效的去噪方法,特别是对于广泛用于院外(OOH)神经科患者和脑机接口(BCI)应用的单通道EEG。与多通道EEG系统相比,单通道EEG系统存在一些困难,如缺乏空间信息、冗余等。本文提出了一种创新的混合方法,将K均值聚类和Savitzky Golay奇异谱分析(SG-SSA)方法相结合,用于从单通道EEG中有效去除眨眼伪迹。提取眨眼伪迹,然后从有噪声的EEG信号中减去,从而保留眨眼期间可用的EEG内容。通过对合成EEG和实时EEG进行广泛实验,我们表明我们提出的方法优于文献中的其他当代方法。与最近文献中提出的基于傅里叶-贝塞尔级数展开的经验小波变换(FBSE-EWT)、结合独立成分分析的奇异谱分析(SSA-ICA)以及结合ICA的总体经验模态分解(EEMD-ICA)相比,我们提出的混合方法在平均绝对误差(MAE)和相对均方根误差(RRMSE)方面有显著降低。