Suppr超能文献

脊髓损伤患者的低频 EEG 可解码手臂和手部的运动意图。

Attempted Arm and Hand Movements can be Decoded from Low-Frequency EEG from Persons with Spinal Cord Injury.

机构信息

Graz University of Technology, Institute of Neural Engineering, BCI-Lab, Graz, Austria.

AUVA rehabilitation clinic, Tobelbad, Austria.

出版信息

Sci Rep. 2019 May 9;9(1):7134. doi: 10.1038/s41598-019-43594-9.

Abstract

We show that persons with spinal cord injury (SCI) retain decodable neural correlates of attempted arm and hand movements. We investigated hand open, palmar grasp, lateral grasp, pronation, and supination in 10 persons with cervical SCI. Discriminative movement information was provided by the time-domain of low-frequency electroencephalography (EEG) signals. Based on these signals, we obtained a maximum average classification accuracy of 45% (chance level was 20%) with respect to the five investigated classes. Pattern analysis indicates central motor areas as the origin of the discriminative signals. Furthermore, we introduce a proof-of-concept to classify movement attempts online in a closed loop, and tested it on a person with cervical SCI. We achieved here a modest classification performance of 68.4% with respect to palmar grasp vs hand open (chance level 50%).

摘要

我们表明,脊髓损伤(SCI)患者保留了可解码的手臂和手部运动尝试的神经相关性。我们研究了 10 名颈 SCI 患者的手部张开、掌心抓握、侧抓握、旋前和旋后运动。低频脑电图(EEG)信号的时域提供了有区别的运动信息。基于这些信号,我们获得了 45%的最大平均分类准确率(机会水平为 20%),针对五个研究的类别。模式分析表明,中枢运动区是有区别信号的起源。此外,我们引入了一个概念验证,以便在线闭环中对运动尝试进行分类,并在一名颈 SCI 患者身上进行了测试。我们在掌心抓握与手部张开的对比中实现了 68.4%的适度分类性能(机会水平为 50%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1b3/6509331/75fba58812f1/41598_2019_43594_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验