Ogaz-González Rafael, Zou Qian, Du Yihui, Gutiérrez-Robledo Luis Miguel, Escamilla-Santiago Ricardo, López-Cervantes Malaquías, Corpeleijn Eva
Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
School of Public Health, Department of Epidemiology and Health Statistics, Hangzhou Normal University, Hangzhou, China.
BMC Geriatr. 2025 May 28;25(1):381. doi: 10.1186/s12877-025-06029-x.
The prevalence of multimorbidity is increasing in aging populations globally. Multimorbidity involves various noncommunicable disease (NCD) combinations that extend beyond individual conditions. Identifying how multimorbidity patterns (MPs) configure is crucial for understanding the role of NCD patterns in health prognosis.
This study identified MPs and examined their associations with sociodemographic and economic factors in 23,452 participants aged ≥ 60 years from the Lifelines cohort in northern Netherlands (baseline: 2007-2013; follow-up: 2011-2019). Complete data on 14 NCDs at two time points were analyzed, with multimorbidity defined as ≥ 2 NCDs. Latent class and factor analyses identified clusters of NCDs, stratified into MPs based on multimorbidity presence. Multinomial logistic regression assessed the relationships between MPs and sociodemographic and economic traits.
Multimorbidity prevalence was 55% at baseline. Five MPs, consistent across assessments, were identified. The 'Vascular' MP included the fewest NCDs (2-4), while the 'Complex-Treatment Spectrum' had the most (5-11). Adjusted analyses revealed that lower education, not having a partner, and lower income significantly increased the relative-risk of belonging to high-risk MPs, such as 'Metabolic Risk,' 'Major CVD-Vascular Conditions,' and 'Complex-Treatment Spectrum', compared to participants without multimorbidity. These MPs reflect profiles with distinct risk factors and prognoses.
Multimorbidity manifests as stable patterns in this population. MPs derived from latent class analysis were more interpretable and consistent over time compared to correlation-based approaches. Income disparities influence MP profiles, highlighting the need for tailored interventions. Longitudinal studies are recommended to explore NCD contributions to MP dynamics and inform strategies addressing health and social inequities.
全球老龄化人口中多种疾病并存的患病率正在上升。多种疾病并存涉及各种非传染性疾病(NCD)组合,其范围超出了个体疾病。确定多种疾病模式(MPs)如何构成对于理解NCD模式在健康预后中的作用至关重要。
本研究在荷兰北部生命线队列中识别了23452名年龄≥60岁的参与者的MPs,并检查了它们与社会人口学和经济因素的关联(基线:2007 - 2013年;随访:2011 - 2019年)。分析了两个时间点上14种NCD的完整数据,将多种疾病并存定义为≥2种NCD。潜在类别和因素分析确定了NCD的聚类,并根据多种疾病并存情况分层为MPs。多项逻辑回归评估了MPs与社会人口学和经济特征之间的关系。
基线时多种疾病并存的患病率为55%。确定了五种在各评估中一致的MPs。“血管性”MP包含的NCD最少(2 - 4种),而“复杂治疗谱”MP包含的NCD最多(5 - 11种)。调整分析显示,与无多种疾病并存的参与者相比,低教育水平、没有伴侣和低收入显著增加了属于高风险MPs(如“代谢风险”、“主要心血管疾病 - 血管疾病”和“复杂治疗谱”)的相对风险。这些MPs反映了具有不同风险因素和预后的概况。
在该人群中,多种疾病并存表现为稳定的模式。与基于相关性的方法相比,通过潜在类别分析得出的MPs随着时间的推移更具可解释性且更一致。收入差距影响MP概况,凸显了采取针对性干预措施的必要性。建议进行纵向研究,以探索NCD对MP动态变化的影响,并为解决健康和社会不平等问题的策略提供信息。