Brinch Maja L, Palladino Andrea, Geurtsen Jeroen, Van Effelterre Thierry, Argante Lorenzo, McConnell Michael J, Christiansen Lene, Pihl Michelle A, Lund Natasja K, Hald Tine
Risk-Benefit, DTU National Food Institute, Kgs. Lyngby, Denmark.
GSK, Siena, Italy.
Antimicrob Resist Infect Control. 2025 May 28;14(1):59. doi: 10.1186/s13756-025-01574-x.
In the fight against antimicrobial resistance, mathematical transmission models have been shown as a valuable tool to guide intervention strategies in public health.
This review investigates the persistence of modelling gaps identified in earlier studies. It expands the scope to include a broader range of control measures, such as monoclonal antibodies, and examines the impact of secondary infections.
This review was conducted according to the PRISMA guidelines. Gaps in model focus areas, dynamics, and reporting were identified and described. The TRACE paradigm was applied to selected models to discuss model development and documentation to guide future modelling efforts.
We identified 170 transmission studies from 2010 to May 2022; Mycobacterium tuberculosis (n = 39) and Staphylococcus aureus (n = 27) resistance transmission were most commonly modelled, focusing on multi-drug and methicillin resistance, respectively. Forty-one studies examined multiple interventions, predominantly drug therapy and vaccination, showing an increasing trend. Most studies were population-based compartmental models (n = 112). The TRACE framework was applied to 39 studies, showing a general lack of description of test and verification of modelling software and comparison of model outputs with external data.
Despite efforts to model antimicrobial resistance and prevention strategies, significant gaps in scope, geographical coverage, drug-pathogen combinations, and viral-bacterial dynamics persist, along with inadequate documentation, hindering model updates and consistent outcomes for policymakers. This review highlights the need for robust modelling practices to enable model refinement as new data becomes available. Particularly, new data for validating modelling outcomes should be a focal point in future modelling research.
在对抗抗菌药物耐药性的斗争中,数学传播模型已被证明是指导公共卫生干预策略的宝贵工具。
本综述调查了早期研究中发现的建模差距的持续性。它扩大了范围,纳入了更广泛的控制措施,如单克隆抗体,并研究了二次感染的影响。
本综述按照PRISMA指南进行。识别并描述了模型重点领域、动态和报告方面的差距。将TRACE范式应用于选定模型,以讨论模型开发和文档编制,为未来的建模工作提供指导。
我们确定了2010年至2022年5月期间的170项传播研究;结核分枝杆菌(n = 39)和金黄色葡萄球菌(n = 27)耐药性传播是最常建模的,分别侧重于多药耐药和甲氧西林耐药。41项研究考察了多种干预措施,主要是药物治疗和疫苗接种,呈增加趋势。大多数研究是基于人群的 compartments 模型(n = 112)。TRACE框架应用于39项研究,结果显示,建模软件的测试和验证以及模型输出与外部数据的比较普遍缺乏描述。
尽管在对抗菌药物耐药性和预防策略进行建模方面做出了努力,但在范围、地理覆盖、药物 - 病原体组合和病毒 - 细菌动态方面仍存在重大差距,同时文档记录不足,这阻碍了模型更新以及为政策制定者提供一致的结果。本综述强调需要稳健的建模实践,以便在有新数据时能够改进模型。特别是,用于验证建模结果的新数据应成为未来建模研究的重点。